Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch, torchvision
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image, ImageColor
|
6 |
+
from diffusers import DDPMPipeline
|
7 |
+
from diffusers import DDIMScheduler
|
8 |
+
|
9 |
+
device = 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
+
|
11 |
+
# Load the pretrained pipeline
|
12 |
+
pipeline_name = 'muneebable/ddpm-celebahq-finetuned-anime-art'
|
13 |
+
image_pipe = DDPMPipeline.from_pretrained(pipeline_name).to(device)
|
14 |
+
|
15 |
+
# Set up the scheduler
|
16 |
+
scheduler = DDIMScheduler.from_pretrained(pipeline_name)
|
17 |
+
scheduler.set_timesteps(num_inference_steps=20)
|
18 |
+
|
19 |
+
# The guidance function
|
20 |
+
def color_loss(images, target_color=(0.1, 0.9, 0.5)):
|
21 |
+
"""Given a target color (R, G, B) return a loss for how far away on average
|
22 |
+
the images' pixels are from that color. Defaults to a light teal: (0.1, 0.9, 0.5) """
|
23 |
+
target = torch.tensor(target_color).to(images.device) * 2 - 1 # Map target color to (-1, 1)
|
24 |
+
target = target[None, :, None, None] # Get shape right to work with the images (b, c, h, w)
|
25 |
+
error = torch.abs(images - target).mean() # Mean absolute difference between the image pixels and the target color
|
26 |
+
return error
|
27 |
+
|
28 |
+
# And the core function to generate an image given the relevant inputs
|
29 |
+
def generate(color, guidance_loss_scale):
|
30 |
+
target_color = ImageColor.getcolor(color, "RGB") # Target color as RGB
|
31 |
+
target_color = [a/255 for a in target_color] # Rescale from (0, 255) to (0, 1)
|
32 |
+
x = torch.randn(1, 3, 256, 256).to(device)
|
33 |
+
for i, t in enumerate(scheduler.timesteps):
|
34 |
+
model_input = scheduler.scale_model_input(x, t)
|
35 |
+
with torch.no_grad():
|
36 |
+
noise_pred = image_pipe.unet(model_input, t)["sample"]
|
37 |
+
x = x.detach().requires_grad_()
|
38 |
+
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
|
39 |
+
loss = color_loss(x0, target_color) * guidance_loss_scale
|
40 |
+
cond_grad = -torch.autograd.grad(loss, x)[0]
|
41 |
+
x = x.detach() + cond_grad
|
42 |
+
x = scheduler.step(noise_pred, t, x).prev_sample
|
43 |
+
grid = torchvision.utils.make_grid(x, nrow=4)
|
44 |
+
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
|
45 |
+
im = Image.fromarray(np.array(im*255).astype(np.uint8))
|
46 |
+
im.save('test.jpeg')
|
47 |
+
return im
|
48 |
+
|
49 |
+
# See the gradio docs for the types of inputs and outputs available
|
50 |
+
inputs = [
|
51 |
+
gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here
|
52 |
+
gr.Slider(label="guidance_scale", minimum=0, maximum=30, value=3)
|
53 |
+
]
|
54 |
+
outputs = gr.Image(label="result")
|
55 |
+
|
56 |
+
# Setting up a minimal interface to our function:
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=generate,
|
59 |
+
inputs=inputs,
|
60 |
+
outputs=outputs,
|
61 |
+
examples=[
|
62 |
+
["#BB2266", 3],["#44CCAA", 5] # You can provide some example inputs to get people started
|
63 |
+
],
|
64 |
+
)
|
65 |
+
|
66 |
+
# And launching
|
67 |
+
if __name__ == "__main__":
|
68 |
+
demo.launch(enable_queue=True)
|
69 |
+
|