muneebable commited on
Commit
836ce90
·
verified ·
1 Parent(s): 4135cc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -48
app.py CHANGED
@@ -1,66 +1,66 @@
1
  import gradio as gr
2
- import torch
3
- import torch.optim as optim
4
- import torchvision.models as models
5
- import torchvision.transforms as transforms
6
- from PIL import Image
7
- import numpy as np
8
- import requests
9
- from io import BytesIO
10
 
11
  # Load VGG19 model
12
- vgg = models.vgg19(pretrained=True).features
13
- for param in vgg.parameters():
14
- param.requires_grad_(False)
15
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
- vgg.to(device)
17
 
18
- # Helper functions (load_image, im_convert, get_features, gram_matrix)
19
- # ... (Include the helper functions you provided earlier here)
20
 
21
- def style_transfer(content_image, style_image, alpha, beta, conv1_1, conv2_1, conv3_1, conv4_1, conv5_1, steps):
22
- content = load_image(content_image).to(device)
23
- style = load_image(style_image, shape=content.shape[-2:]).to(device)
24
 
25
- content_features = get_features(content, vgg)
26
- style_features = get_features(style, vgg)
27
- style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}
28
 
29
- target = content.clone().requires_grad_(True).to(device)
30
 
31
- style_weights = {
32
- 'conv1_1': conv1_1,
33
- 'conv2_1': conv2_1,
34
- 'conv3_1': conv3_1,
35
- 'conv4_1': conv4_1,
36
- 'conv5_1': conv5_1
37
- }
38
 
39
- content_weight = alpha
40
- style_weight = beta * 1e6
41
 
42
- optimizer = optim.Adam([target], lr=0.003)
43
 
44
- for ii in range(1, steps+1):
45
- target_features = get_features(target, vgg)
46
- content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
47
 
48
- style_loss = 0
49
- for layer in style_weights:
50
- target_feature = target_features[layer]
51
- target_gram = gram_matrix(target_feature)
52
- _, d, h, w = target_feature.shape
53
- style_gram = style_grams[layer]
54
- layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
55
- style_loss += layer_style_loss / (d * h * w)
56
 
57
- total_loss = content_weight * content_loss + style_weight * style_loss
58
 
59
- optimizer.zero_grad()
60
- total_loss.backward()
61
- optimizer.step()
62
 
63
- return im_convert(target)
64
 
65
  # Example images
66
  examples = [
 
1
  import gradio as gr
2
+ # import torch
3
+ # import torch.optim as optim
4
+ # import torchvision.models as models
5
+ # import torchvision.transforms as transforms
6
+ # from PIL import Image
7
+ # import numpy as np
8
+ # import requests
9
+ # from io import BytesIO
10
 
11
  # Load VGG19 model
12
+ # vgg = models.vgg19(pretrained=True).features
13
+ # for param in vgg.parameters():
14
+ # param.requires_grad_(False)
15
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ # vgg.to(device)
17
 
18
+ # # Helper functions (load_image, im_convert, get_features, gram_matrix)
19
+ # # ... (Include the helper functions you provided earlier here)
20
 
21
+ # def style_transfer(content_image, style_image, alpha, beta, conv1_1, conv2_1, conv3_1, conv4_1, conv5_1, steps):
22
+ # content = load_image(content_image).to(device)
23
+ # style = load_image(style_image, shape=content.shape[-2:]).to(device)
24
 
25
+ # content_features = get_features(content, vgg)
26
+ # style_features = get_features(style, vgg)
27
+ # style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}
28
 
29
+ # target = content.clone().requires_grad_(True).to(device)
30
 
31
+ # style_weights = {
32
+ # 'conv1_1': conv1_1,
33
+ # 'conv2_1': conv2_1,
34
+ # 'conv3_1': conv3_1,
35
+ # 'conv4_1': conv4_1,
36
+ # 'conv5_1': conv5_1
37
+ # }
38
 
39
+ # content_weight = alpha
40
+ # style_weight = beta * 1e6
41
 
42
+ # optimizer = optim.Adam([target], lr=0.003)
43
 
44
+ # for ii in range(1, steps+1):
45
+ # target_features = get_features(target, vgg)
46
+ # content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
47
 
48
+ # style_loss = 0
49
+ # for layer in style_weights:
50
+ # target_feature = target_features[layer]
51
+ # target_gram = gram_matrix(target_feature)
52
+ # _, d, h, w = target_feature.shape
53
+ # style_gram = style_grams[layer]
54
+ # layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
55
+ # style_loss += layer_style_loss / (d * h * w)
56
 
57
+ # total_loss = content_weight * content_loss + style_weight * style_loss
58
 
59
+ # optimizer.zero_grad()
60
+ # total_loss.backward()
61
+ # optimizer.step()
62
 
63
+ # return im_convert(target)
64
 
65
  # Example images
66
  examples = [