Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
with st.form(key='my_form'):
|
4 |
sLen = st.slider('Sepal lenght(cm) ', 0.0, 10.0)
|
@@ -6,3 +7,10 @@ with st.form(key='my_form'):
|
|
6 |
pLen = st.slider('Petal lenght(cm) ', 0.0, 10.0)
|
7 |
pWid = st.slider('Petal width(cm) ', 0.0, 10.0)
|
8 |
st.form_submit_button('Predict')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from sklearn import neighbors, datasets
|
3 |
|
4 |
with st.form(key='my_form'):
|
5 |
sLen = st.slider('Sepal lenght(cm) ', 0.0, 10.0)
|
|
|
7 |
pLen = st.slider('Petal lenght(cm) ', 0.0, 10.0)
|
8 |
pWid = st.slider('Petal width(cm) ', 0.0, 10.0)
|
9 |
st.form_submit_button('Predict')
|
10 |
+
|
11 |
+
iris = datasets.load_iris()
|
12 |
+
X,y = iris.data, iris.target
|
13 |
+
knn = neighbors.KNeighborsClassifier(n_neighbors=2) #k = 3,4,5,6
|
14 |
+
knn.fit(X,y)
|
15 |
+
predict = knn.predict([[sLen,sWid,pLen,pWid]])
|
16 |
+
print(iris.target_names[knn.predict([[3,5,4,2]])])
|