Spaces:
Sleeping
Sleeping
File size: 9,236 Bytes
067fa6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
from transformers import (
Qwen2VLForConditionalGeneration,
AutoModelForCausalLM,
AutoProcessor
)
import torch
from PIL import Image
import time
import os
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import numpy as np
@st.cache_resource
def load_models():
"""Load both models and processors"""
# Load Qwen model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
torch_dtype=torch.bfloat16,
device_map="auto"
).eval()
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4")
# Load Florence model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large-ft",
torch_dtype=torch_dtype,
trust_remote_code=True
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large-ft",
trust_remote_code=True
)
return qwen_model, qwen_processor, florence_model, florence_processor, device, torch_dtype
def process_qwen(image, prompt, model, processor):
"""Process image with Qwen2-VL"""
start_time = time.time()
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to("cuda")
output_ids = model.generate(**inputs, max_new_tokens=100)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
inference_time = time.time() - start_time
return output_text[0].strip(), inference_time
def draw_bounding_boxes(image, bboxes, labels):
"""Draw bounding boxes and labels on the image"""
img_array = np.array(image)
fig, ax = plt.subplots()
ax.imshow(img_array)
for bbox, label in zip(bboxes, labels):
x, y, x2, y2 = bbox
width = x2 - x
height = y2 - y
rect = patches.Rectangle(
(x, y), width, height,
linewidth=2,
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
plt.text(
x, y-5,
label,
color='red',
fontsize=12,
bbox=dict(facecolor='white', alpha=0.8, edgecolor='none', pad=0)
)
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
plt.close()
buf.seek(0)
return Image.open(buf)
def process_florence(image, text_input, model, processor, device, torch_dtype):
"""Process image with Florence-2"""
start_time = time.time()
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
prompt = task_prompt + text_input if text_input else task_prompt
inputs = processor(
text=prompt,
images=image,
return_tensors="pt"
).to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=2048,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
inference_time = time.time() - start_time
result = parsed_answer[task_prompt]
annotated_image = draw_bounding_boxes(
image,
result['bboxes'],
result['labels']
)
return result, inference_time, annotated_image
def main():
st.markdown("<h1 style='font-size: 24px;'>🚗 Vehicle Analysis Pipeline</h1>", unsafe_allow_html=True)
# Load models
with st.spinner("Loading models... This might take a minute."):
qwen_model, qwen_processor, florence_model, florence_processor, device, torch_dtype = load_models()
# Initialize session state
if 'selected_image' not in st.session_state:
st.session_state.selected_image = None
if 'qwen_result' not in st.session_state:
st.session_state.qwen_result = None
if 'florence_result' not in st.session_state:
st.session_state.florence_result = None
if 'annotated_image' not in st.session_state:
st.session_state.annotated_image = None
# Image selection
col1, col2 = st.columns([1, 2])
with col1:
input_option = st.radio("Choose input method:", ["Use example image", "Upload image"], label_visibility="collapsed")
if input_option == "Upload image":
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
image_source = uploaded_file
if uploaded_file:
st.session_state.selected_image = uploaded_file
else:
image_source = st.session_state.selected_image
# Default prompt for Qwen
default_prompt = "What type of vehicle is this? Choose only from: car, pickup, bus, truck, motorbike, van. Answer only in one word."
prompt = st.text_area("Enter prompt for classification:", value=default_prompt, height=100)
analyze_button = st.button("Analyze Image", use_container_width=True, disabled=image_source is None)
# Display and process
if image_source:
try:
if isinstance(image_source, str):
image = Image.open(image_source).convert("RGB")
else:
image = Image.open(image_source).convert("RGB")
with col2:
st.image(image, caption="Selected Image", width=300)
if analyze_button:
# Step 1: Qwen Analysis
with st.spinner("Step 1: Classifying vehicle type..."):
qwen_result, qwen_time = process_qwen(image, prompt, qwen_model, qwen_processor)
st.session_state.qwen_result = qwen_result
# Step 2: Florence Analysis
with st.spinner("Step 2: Detecting vehicle location..."):
florence_result, florence_time, annotated_image = process_florence(
image,
f"Find the {qwen_result} in the image",
florence_model,
florence_processor,
device,
torch_dtype
)
st.session_state.florence_result = florence_result
st.session_state.annotated_image = annotated_image
# Display results
st.markdown("### Analysis Results")
# Qwen results
st.markdown("#### Step 1: Vehicle Classification")
st.markdown(f"**Type:** {st.session_state.qwen_result}")
st.markdown(f"*Classification time: {qwen_time:.2f} seconds*")
# Florence results
st.markdown("#### Step 2: Vehicle Detection")
st.image(annotated_image, caption="Vehicle Detection Result", use_container_width=True)
st.markdown(f"*Detection time: {florence_time:.2f} seconds*")
st.markdown("**Raw Detection Data:**")
st.json(florence_result)
except Exception as e:
st.error(f"Error processing image: {str(e)}")
# Example images section
if input_option == "Use example image":
st.markdown("### Example Images")
example_images = [f for f in os.listdir("images") if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
if example_images:
cols = st.columns(4)
for idx, img_name in enumerate(example_images):
with cols[idx % 4]:
img_path = os.path.join("images", img_name)
img = Image.open(img_path)
img.thumbnail((150, 150))
if st.button("📷", key=f"img_{idx}", help=img_name, use_container_width=True):
st.session_state.selected_image = img_path
st.rerun()
st.image(img, caption=img_name, use_container_width=True)
else:
st.error("No example images found in the 'images' directory")
if __name__ == "__main__":
main() |