File size: 9,236 Bytes
067fa6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
from transformers import (
    Qwen2VLForConditionalGeneration,
    AutoModelForCausalLM,
    AutoProcessor
)
import torch
from PIL import Image
import time
import os
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import numpy as np


@st.cache_resource
def load_models():
    """Load both models and processors"""
    # Load Qwen model
    qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4", 
        torch_dtype=torch.bfloat16, 
        device_map="auto"
    ).eval()
    qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4")

    # Load Florence model
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    florence_model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Florence-2-large-ft", 
        torch_dtype=torch_dtype, 
        trust_remote_code=True
    ).to(device)
    florence_processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-large-ft", 
        trust_remote_code=True
    )

    return qwen_model, qwen_processor, florence_model, florence_processor, device, torch_dtype

def process_qwen(image, prompt, model, processor):
    """Process image with Qwen2-VL"""
    start_time = time.time()
    
    conversation = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": prompt},
            ],
        },
    ]

    text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
    inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to("cuda")

    output_ids = model.generate(**inputs, max_new_tokens=100)
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
    output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)

    inference_time = time.time() - start_time
    return output_text[0].strip(), inference_time

def draw_bounding_boxes(image, bboxes, labels):
    """Draw bounding boxes and labels on the image"""
    img_array = np.array(image)
    fig, ax = plt.subplots()
    ax.imshow(img_array)
    
    for bbox, label in zip(bboxes, labels):
        x, y, x2, y2 = bbox
        width = x2 - x
        height = y2 - y
        
        rect = patches.Rectangle(
            (x, y), width, height,
            linewidth=2,
            edgecolor='red',
            facecolor='none'
        )
        ax.add_patch(rect)
        
        plt.text(
            x, y-5,
            label,
            color='red',
            fontsize=12,
            bbox=dict(facecolor='white', alpha=0.8, edgecolor='none', pad=0)
        )
    
    plt.axis('off')
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    plt.close()
    buf.seek(0)
    return Image.open(buf)

def process_florence(image, text_input, model, processor, device, torch_dtype):
    """Process image with Florence-2"""
    start_time = time.time()
    
    task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
    prompt = task_prompt + text_input if text_input else task_prompt

    inputs = processor(
        text=prompt, 
        images=image, 
        return_tensors="pt"
    ).to(device, torch_dtype)
    
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=2048,
        num_beams=3
    )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text, 
        task=task_prompt, 
        image_size=(image.width, image.height)
    )

    inference_time = time.time() - start_time
    result = parsed_answer[task_prompt]
    annotated_image = draw_bounding_boxes(
        image,
        result['bboxes'],
        result['labels']
    )
    
    return result, inference_time, annotated_image

def main():
    st.markdown("<h1 style='font-size: 24px;'>🚗 Vehicle Analysis Pipeline</h1>", unsafe_allow_html=True)

    # Load models
    with st.spinner("Loading models... This might take a minute."):
        qwen_model, qwen_processor, florence_model, florence_processor, device, torch_dtype = load_models()

    # Initialize session state
    if 'selected_image' not in st.session_state:
        st.session_state.selected_image = None
    if 'qwen_result' not in st.session_state:
        st.session_state.qwen_result = None
    if 'florence_result' not in st.session_state:
        st.session_state.florence_result = None
    if 'annotated_image' not in st.session_state:
        st.session_state.annotated_image = None

    # Image selection
    col1, col2 = st.columns([1, 2])

    with col1:
        input_option = st.radio("Choose input method:", ["Use example image", "Upload image"], label_visibility="collapsed")
        
        if input_option == "Upload image":
            uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
            image_source = uploaded_file
            if uploaded_file:
                st.session_state.selected_image = uploaded_file
        else:
            image_source = st.session_state.selected_image

        # Default prompt for Qwen
        default_prompt = "What type of vehicle is this? Choose only from: car, pickup, bus, truck, motorbike, van. Answer only in one word."
        prompt = st.text_area("Enter prompt for classification:", value=default_prompt, height=100)
        
        analyze_button = st.button("Analyze Image", use_container_width=True, disabled=image_source is None)

    # Display and process
    if image_source:
        try:
            if isinstance(image_source, str):
                image = Image.open(image_source).convert("RGB")
            else:
                image = Image.open(image_source).convert("RGB")
            
            with col2:
                st.image(image, caption="Selected Image", width=300)

            if analyze_button:
                # Step 1: Qwen Analysis
                with st.spinner("Step 1: Classifying vehicle type..."):
                    qwen_result, qwen_time = process_qwen(image, prompt, qwen_model, qwen_processor)
                    st.session_state.qwen_result = qwen_result
                
                # Step 2: Florence Analysis
                with st.spinner("Step 2: Detecting vehicle location..."):
                    florence_result, florence_time, annotated_image = process_florence(
                        image, 
                        f"Find the {qwen_result} in the image", 
                        florence_model, 
                        florence_processor, 
                        device, 
                        torch_dtype
                    )
                    st.session_state.florence_result = florence_result
                    st.session_state.annotated_image = annotated_image

                # Display results
                st.markdown("### Analysis Results")
                
                # Qwen results
                st.markdown("#### Step 1: Vehicle Classification")
                st.markdown(f"**Type:** {st.session_state.qwen_result}")
                st.markdown(f"*Classification time: {qwen_time:.2f} seconds*")
                
                # Florence results
                st.markdown("#### Step 2: Vehicle Detection")
                st.image(annotated_image, caption="Vehicle Detection Result", use_container_width=True)
                st.markdown(f"*Detection time: {florence_time:.2f} seconds*")
                st.markdown("**Raw Detection Data:**")
                st.json(florence_result)

        except Exception as e:
            st.error(f"Error processing image: {str(e)}")

    # Example images section
    if input_option == "Use example image":
        st.markdown("### Example Images")
        example_images = [f for f in os.listdir("images") if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
        
        if example_images:
            cols = st.columns(4)
            for idx, img_name in enumerate(example_images):
                with cols[idx % 4]:
                    img_path = os.path.join("images", img_name)
                    img = Image.open(img_path)
                    img.thumbnail((150, 150))
                    
                    if st.button("📷", key=f"img_{idx}", help=img_name, use_container_width=True):
                        st.session_state.selected_image = img_path
                        st.rerun()
                    
                    st.image(img, caption=img_name, use_container_width=True)
        else:
            st.error("No example images found in the 'images' directory")

if __name__ == "__main__":
    main()