File size: 7,595 Bytes
a8c5cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067fa6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
from transformers import (
    AutoModelForCausalLM,
    AutoProcessor
)
import torch
from PIL import Image
import time
import os
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import numpy as np


@st.cache_resource
def load_model():
    """Load the model and processor (cached to prevent reloading)"""
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    
    model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Florence-2-large-ft", 
        torch_dtype=torch_dtype, 
        trust_remote_code=True
    ).to(device)
    processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-large-ft", 
        trust_remote_code=True
    )
    return model, processor, device, torch_dtype

def draw_bounding_boxes(image, bboxes, labels):
    """Draw bounding boxes and labels on the image"""
    # Convert PIL image to numpy array
    img_array = np.array(image)
    
    # Create figure and axis
    fig, ax = plt.subplots()
    ax.imshow(img_array)
    
    # Add each bounding box and label
    for bbox, label in zip(bboxes, labels):
        x, y, x2, y2 = bbox
        width = x2 - x
        height = y2 - y
        
        # Create rectangle patch
        rect = patches.Rectangle(
            (x, y), width, height,
            linewidth=2,
            edgecolor='red',
            facecolor='none'
        )
        ax.add_patch(rect)
        
        # Add label above the box
        plt.text(
            x, y-5,
            label,
            color='red',
            fontsize=12,
            bbox=dict(facecolor='white', alpha=0.8, edgecolor='none', pad=0)
        )
    
    # Remove axes
    plt.axis('off')
    
    # Convert plot to image
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    plt.close()
    buf.seek(0)
    return Image.open(buf)

def process_image(image, text_input, model, processor, device, torch_dtype):
    """Process the image and return the model's output"""
    start_time = time.time()
    
    task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
    prompt = task_prompt + text_input if text_input else task_prompt

    inputs = processor(
        text=prompt, 
        images=image, 
        return_tensors="pt"
    ).to(device, torch_dtype)
    
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=2048,
        num_beams=3
    )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text, 
        task=task_prompt, 
        image_size=(image.width, image.height)
    )

    inference_time = time.time() - start_time
    
    # Create annotated image
    result = parsed_answer[task_prompt]
    annotated_image = draw_bounding_boxes(
        image,
        result['bboxes'],
        result['labels']
    )
    
    return result, inference_time, annotated_image

def main():
    # Compact header
    st.markdown("<h1 style='font-size: 24px;'>🔍 Image Analysis with Florence-2</h1>", unsafe_allow_html=True)

    # Load model and processor
    with st.spinner("Loading model... This might take a minute."):
        model, processor, device, torch_dtype = load_model()

    # Initialize session state
    if 'selected_image' not in st.session_state:
        st.session_state.selected_image = None
    if 'result' not in st.session_state:
        st.session_state.result = None
    if 'inference_time' not in st.session_state:
        st.session_state.inference_time = None
    if 'annotated_image' not in st.session_state:
        st.session_state.annotated_image = None

    # Main content area
    col1, col2, col3 = st.columns([1, 1.5, 1])

    with col1:
        # Input method selection
        input_option = st.radio("Choose input method:", ["Use example image", "Upload image"], label_visibility="collapsed")
        
        if input_option == "Upload image":
            uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
            image_source = uploaded_file
            if uploaded_file:
                st.session_state.selected_image = uploaded_file
        else:
            image_source = st.session_state.selected_image

    # Default prompt and analysis section
    default_prompt = "<output from qwen2 eg. bus>"
    prompt = st.text_area("Enter prompt:", value=default_prompt, height=100)
    
    analyze_col1, analyze_col2 = st.columns([1, 2])
    with analyze_col1:
        analyze_button = st.button("Analyze Image", use_container_width=True, disabled=image_source is None)

    # Display selected image and results
    if image_source:
        try:
            if isinstance(image_source, str):
                image = Image.open(image_source).convert("RGB")
            else:
                image = Image.open(image_source).convert("RGB")
            st.image(image, caption="Selected Image", width=300)
        except Exception as e:
            st.error(f"Error loading image: {str(e)}")

    # Analysis results
    if analyze_button and image_source:
        with st.spinner("Analyzing..."):
            try:
                result, inference_time, annotated_image = process_image(image, prompt, model, processor, device, torch_dtype)
                st.session_state.result = result
                st.session_state.inference_time = inference_time
                st.session_state.annotated_image = annotated_image
            except Exception as e:
                st.error(f"Error: {str(e)}")

    if st.session_state.result:
        st.success("Analysis Complete!")
        
        # Display the annotated image
        st.image(st.session_state.annotated_image, caption="Analyzed Image with Detections", use_container_width=True)
        
        # Display raw results and inference time
        st.markdown("**Raw Results:**")
        st.json(st.session_state.result)
        st.markdown(f"*Inference time: {st.session_state.inference_time:.2f} seconds*")

    # Example images section
    if input_option == "Use example image":
        st.markdown("### Example Images")
        example_images = [f for f in os.listdir("images") if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
        
        if example_images:
            # Create grid of images
            cols = st.columns(4)  # Adjust number of columns as needed
            for idx, img_name in enumerate(example_images):
                with cols[idx % 4]:
                    img_path = os.path.join("images", img_name)
                    img = Image.open(img_path)
                    img.thumbnail((150, 150))
                    
                    # Make image clickable
                    if st.button(
                        "📷",
                        key=f"img_{idx}",
                        help=img_name,
                        use_container_width=True
                    ):
                        st.session_state.selected_image = img_path
                        st.rerun()
                    
                    # Display image with conditional styling
                    st.image(
                        img,
                        caption=img_name,
                        use_container_width=True,
                    )
        else:
            st.error("No example images found in the 'images' directory")

if __name__ == "__main__":
    main()