Spaces:
Sleeping
Sleeping
File size: 7,595 Bytes
a8c5cb4 067fa6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
from transformers import (
AutoModelForCausalLM,
AutoProcessor
)
import torch
from PIL import Image
import time
import os
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import numpy as np
@st.cache_resource
def load_model():
"""Load the model and processor (cached to prevent reloading)"""
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large-ft",
torch_dtype=torch_dtype,
trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large-ft",
trust_remote_code=True
)
return model, processor, device, torch_dtype
def draw_bounding_boxes(image, bboxes, labels):
"""Draw bounding boxes and labels on the image"""
# Convert PIL image to numpy array
img_array = np.array(image)
# Create figure and axis
fig, ax = plt.subplots()
ax.imshow(img_array)
# Add each bounding box and label
for bbox, label in zip(bboxes, labels):
x, y, x2, y2 = bbox
width = x2 - x
height = y2 - y
# Create rectangle patch
rect = patches.Rectangle(
(x, y), width, height,
linewidth=2,
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Add label above the box
plt.text(
x, y-5,
label,
color='red',
fontsize=12,
bbox=dict(facecolor='white', alpha=0.8, edgecolor='none', pad=0)
)
# Remove axes
plt.axis('off')
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
plt.close()
buf.seek(0)
return Image.open(buf)
def process_image(image, text_input, model, processor, device, torch_dtype):
"""Process the image and return the model's output"""
start_time = time.time()
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
prompt = task_prompt + text_input if text_input else task_prompt
inputs = processor(
text=prompt,
images=image,
return_tensors="pt"
).to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=2048,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
inference_time = time.time() - start_time
# Create annotated image
result = parsed_answer[task_prompt]
annotated_image = draw_bounding_boxes(
image,
result['bboxes'],
result['labels']
)
return result, inference_time, annotated_image
def main():
# Compact header
st.markdown("<h1 style='font-size: 24px;'>🔍 Image Analysis with Florence-2</h1>", unsafe_allow_html=True)
# Load model and processor
with st.spinner("Loading model... This might take a minute."):
model, processor, device, torch_dtype = load_model()
# Initialize session state
if 'selected_image' not in st.session_state:
st.session_state.selected_image = None
if 'result' not in st.session_state:
st.session_state.result = None
if 'inference_time' not in st.session_state:
st.session_state.inference_time = None
if 'annotated_image' not in st.session_state:
st.session_state.annotated_image = None
# Main content area
col1, col2, col3 = st.columns([1, 1.5, 1])
with col1:
# Input method selection
input_option = st.radio("Choose input method:", ["Use example image", "Upload image"], label_visibility="collapsed")
if input_option == "Upload image":
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
image_source = uploaded_file
if uploaded_file:
st.session_state.selected_image = uploaded_file
else:
image_source = st.session_state.selected_image
# Default prompt and analysis section
default_prompt = "<output from qwen2 eg. bus>"
prompt = st.text_area("Enter prompt:", value=default_prompt, height=100)
analyze_col1, analyze_col2 = st.columns([1, 2])
with analyze_col1:
analyze_button = st.button("Analyze Image", use_container_width=True, disabled=image_source is None)
# Display selected image and results
if image_source:
try:
if isinstance(image_source, str):
image = Image.open(image_source).convert("RGB")
else:
image = Image.open(image_source).convert("RGB")
st.image(image, caption="Selected Image", width=300)
except Exception as e:
st.error(f"Error loading image: {str(e)}")
# Analysis results
if analyze_button and image_source:
with st.spinner("Analyzing..."):
try:
result, inference_time, annotated_image = process_image(image, prompt, model, processor, device, torch_dtype)
st.session_state.result = result
st.session_state.inference_time = inference_time
st.session_state.annotated_image = annotated_image
except Exception as e:
st.error(f"Error: {str(e)}")
if st.session_state.result:
st.success("Analysis Complete!")
# Display the annotated image
st.image(st.session_state.annotated_image, caption="Analyzed Image with Detections", use_container_width=True)
# Display raw results and inference time
st.markdown("**Raw Results:**")
st.json(st.session_state.result)
st.markdown(f"*Inference time: {st.session_state.inference_time:.2f} seconds*")
# Example images section
if input_option == "Use example image":
st.markdown("### Example Images")
example_images = [f for f in os.listdir("images") if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
if example_images:
# Create grid of images
cols = st.columns(4) # Adjust number of columns as needed
for idx, img_name in enumerate(example_images):
with cols[idx % 4]:
img_path = os.path.join("images", img_name)
img = Image.open(img_path)
img.thumbnail((150, 150))
# Make image clickable
if st.button(
"📷",
key=f"img_{idx}",
help=img_name,
use_container_width=True
):
st.session_state.selected_image = img_path
st.rerun()
# Display image with conditional styling
st.image(
img,
caption=img_name,
use_container_width=True,
)
else:
st.error("No example images found in the 'images' directory")
if __name__ == "__main__":
main() |