--- title: HTER emoji: 🤗 colorFrom: blue colorTo: red sdk: gradio sdk_version: 3.19.1 app_file: app.py pinned: false tags: - evaluate - metric description: >- HTER (Half Total Error Rate) is a metric that combines the False Accept Rate (FAR) and False Reject Rate (FRR) to provide a comprehensive evaluation of a system's performance. It can be computed with: HTER = (FAR + FRR) / 2 Where: FAR (False Accept Rate) = FP / (FP + TN) FRR (False Reject Rate) = FN / (FN + TP) TP: True positive TN: True negative FP: False positive FN: False negative --- # Metric Card for HTER ## Metric Description HTER (Half Total Error Rate) is a metric that combines the False Accept Rate (FAR) and False Reject Rate (FRR) to provide a comprehensive evaluation of a system's performance. It can be computed with: HTER = (FAR + FRR) / 2 Where: FAR (False Accept Rate) = FP / (FP + TN) FRR (False Reject Rate) = FN / (FN + TP) TP: True positive TN: True negative FP: False positive FN: False negative ## How to Use At minimum, this metric requires predictions and references as inputs. ```python >>> hter_metric = evaluate.load("murinj/hter") >>> results = hter_metric.compute(references=[0, 0], predictions=[0, 1]) >>> print(results) {'HTER': 0.25} ``` ### Inputs - **predictions** (`list` of `int`): Predicted labels. - **references** (`list` of `int`): Ground truth labels. [//]: # (- **normalize** (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True.) [//]: # (- **sample_weight** (`list` of `float`): Sample weights Defaults to None.) ### Output Values - **HTER**(`float` or `int`): HTER score. Minimum possible value is 0. Maximum possible value is 1.0. Output Example(s): ```python {'HTER': 0.0} ``` This metric outputs a dictionary, containing the HTER score. [//]: # (## Citation(s)) [//]: # (```bibtex) [//]: # () [//]: # (```) ## Further References