muryshev commited on
Commit
5c9319c
·
verified ·
1 Parent(s): ad174ba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -57
app.py CHANGED
@@ -1,69 +1,91 @@
1
- #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
2
- #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
3
- import gradio as gr
4
- from openai import OpenAI
5
- import os
6
 
7
- ACCESS_TOKEN = os.getenv("HF_TOKEN")
8
 
9
- client = OpenAI(
10
- base_url="https://integrate.api.nvidia.com/v1",
11
- api_key=ACCESS_TOKEN,
12
- )
13
 
14
- def respond(
15
- message,
16
- history: list[tuple[str, str]],
17
- system_message,
18
- max_tokens,
19
- temperature,
20
- top_p,
21
- ):
22
- messages = [{"role": "system", "content": system_message}]
23
 
24
- for val in history:
25
- if val[0]:
26
- messages.append({"role": "user", "content": val[0]})
27
- if val[1]:
28
- messages.append({"role": "assistant", "content": val[1]})
29
 
30
- messages.append({"role": "user", "content": message})
31
 
32
- response = ""
33
 
34
- for message in client.chat.completions.create(
35
- model="nvidia/llama-3.1-nemotron-70b-instruct",
36
- max_tokens=max_tokens,
37
- stream=True,
38
- temperature=temperature,
39
- top_p=top_p,
40
- messages=messages,
41
- ):
42
- token = message.choices[0].delta.content
43
 
44
- response += token
45
- yield response
46
 
47
- chatbot = gr.Chatbot(height=600)
48
 
49
- service = gr.ChatInterface(
50
- respond,
51
- additional_inputs=[
52
- gr.Textbox(value="", label="Системный промпт"),
53
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"),
54
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"),
55
- gr.Slider(
56
- minimum=0.1,
57
- maximum=1.0,
58
- value=0.95,
59
- step=0.05,
60
- label="top_p",
61
- ),
62
 
63
- ],
64
- fill_height=True,
65
- chatbot=chatbot,
66
- theme=gr.themes.Soft(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  )
68
- if __name__ == "__main__":
69
- service.launch()
 
 
 
 
1
+ # #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
2
+ # #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
3
+ # import gradio as gr
4
+ # from openai import OpenAI
5
+ # import os
6
 
7
+ # ACCESS_TOKEN = os.getenv("HF_TOKEN")
8
 
9
+ # client = OpenAI(
10
+ # base_url="https://integrate.api.nvidia.com/v1",
11
+ # api_key=ACCESS_TOKEN,
12
+ # )
13
 
14
+ # def respond(
15
+ # message,
16
+ # history: list[tuple[str, str]],
17
+ # system_message,
18
+ # max_tokens,
19
+ # temperature,
20
+ # top_p,
21
+ # ):
22
+ # messages = [{"role": "system", "content": system_message}]
23
 
24
+ # for val in history:
25
+ # if val[0]:
26
+ # messages.append({"role": "user", "content": val[0]})
27
+ # if val[1]:
28
+ # messages.append({"role": "assistant", "content": val[1]})
29
 
30
+ # messages.append({"role": "user", "content": message})
31
 
32
+ # response = ""
33
 
34
+ # for message in client.chat.completions.create(
35
+ # model="nvidia/llama-3.1-nemotron-70b-instruct",
36
+ # max_tokens=max_tokens,
37
+ # stream=True,
38
+ # temperature=temperature,
39
+ # top_p=top_p,
40
+ # messages=messages,
41
+ # ):
42
+ # token = message.choices[0].delta.content
43
 
44
+ # response += token
45
+ # yield response
46
 
47
+ # chatbot = gr.Chatbot(height=600)
48
 
49
+ # service = gr.ChatInterface(
50
+ # respond,
51
+ # additional_inputs=[
52
+ # gr.Textbox(value="", label="Системный промпт"),
53
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"),
54
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"),
55
+ # gr.Slider(
56
+ # minimum=0.1,
57
+ # maximum=1.0,
58
+ # value=0.95,
59
+ # step=0.05,
60
+ # label="top_p",
61
+ # ),
62
 
63
+ # ],
64
+ # fill_height=True,
65
+ # chatbot=chatbot,
66
+ # theme=gr.themes.Soft(),
67
+ # )
68
+ # if __name__ == "__main__":
69
+ # service.launch()
70
+
71
+
72
+ from openai import OpenAI
73
+
74
+ client = OpenAI(
75
+ base_url = "https://integrate.api.nvidia.com/v1",
76
+ api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC"
77
+ )
78
+
79
+ completion = client.chat.completions.create(
80
+ model="nvidia/llama-3.1-nemotron-70b-instruct",
81
+ messages=[{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
82
+ temperature=0.5,
83
+ top_p=1,
84
+ max_tokens=1024,
85
+ stream=True
86
  )
87
+
88
+ for chunk in completion:
89
+ if chunk.choices[0].delta.content is not None:
90
+ print(chunk.choices[0].delta.content, end="")
91
+