Spaces:
Sleeping
Sleeping
File size: 9,268 Bytes
57cf043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
"""This module includes classes to define configurations."""
from typing import Any, Dict, List, Optional
from pyaml_env import parse_config
from pydantic import BaseModel
class Query(BaseModel):
query: str
query_abbreviation: str
abbreviations_replaced: Optional[List] = None
userName: Optional[str] = None
class SemanticChunk(BaseModel):
index_answer: int
doc_name: str
title: str
text_answer: str
# doc_number: str # TODO Потом поменять название переменной на doc_id везде с чем это будет связанно
other_info: List
start_index_paragraph: int
class FilterChunks(BaseModel):
id: str
filename: str
title: str
chunks: List[SemanticChunk]
class BusinessProcess(BaseModel):
production_activities_section: Optional[str]
processes_name: Optional[str]
level_process: Optional[str]
class Lead(BaseModel):
person: Optional[str]
leads: Optional[str]
class Subordinate(BaseModel):
person_name: Optional[str]
position: Optional[str]
class OrganizationalStructure(BaseModel):
position: Optional[str] = None
leads: Optional[List[Lead]] = None
subordinates: Optional[Subordinate] = None
class RocksNN(BaseModel):
division: Optional[str]
company_name: Optional[str]
class RocksNNSearch(BaseModel):
division: Optional[str]
company_name: Optional[List]
class SegmentationSearch(BaseModel):
segmentation_model: Optional[str]
company_name: Optional[List]
class Group(BaseModel):
group_name: Optional[str]
position_in_group: Optional[str]
block: Optional[str]
class GroupComposition(BaseModel):
person_name: Optional[str]
position_in_group: Optional[str]
class SearchGroupComposition(BaseModel):
group_name: Optional[str]
group_composition: Optional[List[GroupComposition]]
class PeopleChunks(BaseModel):
business_processes: Optional[List[BusinessProcess]] = None
organizatinal_structure: Optional[List[OrganizationalStructure]] = None
business_curator: Optional[List[RocksNN]] = None
groups: Optional[List[Group]] = None
person_name: str
class SummaryChunks(BaseModel):
doc_chunks: Optional[List[FilterChunks]] = None
people_search: Optional[List[PeopleChunks]] = None
groups_search: Optional[SearchGroupComposition] = None
rocks_nn_search: Optional[RocksNNSearch] = None
segmentation_search: Optional[SegmentationSearch] = None
query_type: str = '[3]'
class ElasticConfiguration:
def __init__(self, config_data):
self.es_host = str(config_data['es_host'])
self.es_port = int(config_data['es_port'])
self.use_elastic = bool(config_data['use_elastic'])
self.people_path = str(config_data['people_path'])
class FaissDataConfiguration:
def __init__(self, config_data):
self.model_embedding_path = str(config_data['model_embedding_path'])
self.device = str(config_data['device'])
self.path_to_metadata = str(config_data['path_to_metadata'])
class ChunksElasticSearchConfiguration:
def __init__(self, config_data):
self.use_chunks_search = bool(config_data['use_chunks_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class PeopleSearchConfiguration:
def __init__(self, config_data):
self.use_people_search = bool(config_data['use_people_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class VectorSearchConfiguration:
def __init__(self, config_data):
self.use_vector_search = bool(config_data['use_vector_search'])
self.k_neighbors = int(config_data['k_neighbors'])
class GroupsSearchConfiguration:
def __init__(self, config_data):
self.use_groups_search = bool(config_data['use_groups_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class RocksNNSearchConfiguration:
def __init__(self, config_data):
self.use_rocks_nn_search = bool(config_data['use_rocks_nn_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class AbbreviationSearchConfiguration:
def __init__(self, config_data):
self.use_abbreviation_search = bool(config_data['use_abbreviation_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class SegmentationSearchConfiguration:
def __init__(self, config_data):
self.use_segmentation_search = bool(config_data['use_segmentation_search'])
self.index_name = str(config_data['index_name'])
self.k_neighbors = int(config_data['k_neighbors'])
class SearchConfiguration:
def __init__(self, config_data):
self.vector_search = VectorSearchConfiguration(config_data['vector_search'])
self.people_elastic_search = PeopleSearchConfiguration(
config_data['people_elastic_search']
)
self.chunks_elastic_search = ChunksElasticSearchConfiguration(
config_data['chunks_elastic_search']
)
self.groups_elastic_search = GroupsSearchConfiguration(
config_data['groups_elastic_search']
)
self.rocks_nn_elastic_search = RocksNNSearchConfiguration(
config_data['rocks_nn_elastic_search']
)
self.segmentation_elastic_search = SegmentationSearchConfiguration(
config_data['segmentation_elastic_search']
)
self.stop_index_names = list(config_data['stop_index_names'])
self.abbreviation_search = AbbreviationSearchConfiguration(
config_data['abbreviation_search']
)
class FilesConfiguration:
def __init__(self, config_data):
self.empty_start = bool(config_data['empty_start'])
self.regulations_path = str(config_data['regulations_path'])
self.default_regulations_path = str(config_data['default_regulations_path'])
self.documents_path = str(config_data['documents_path'])
class RankingConfiguration:
def __init__(self, config_data):
self.use_ranging = bool(config_data['use_ranging'])
self.alpha = float(config_data['alpha'])
self.beta = float(config_data['beta'])
self.k_neighbors = int(config_data['k_neighbors'])
class DataBaseConfiguration:
def __init__(self, config_data):
self.elastic = ElasticConfiguration(config_data['elastic'])
self.faiss = FaissDataConfiguration(config_data['faiss'])
self.search = SearchConfiguration(config_data['search'])
self.files = FilesConfiguration(config_data['files'])
self.ranker = RankingConfiguration(config_data['ranging'])
class LLMConfiguration:
def __init__(self, config_data):
self.base_url = str(config_data['base_url']) if config_data['base_url'] not in ("", "null", "None") else None
self.api_key_env = (
str(config_data['api_key_env'])
if config_data['api_key_env'] not in ("", "null", "None")
else None
)
self.model = str(config_data['model'])
self.tokenizer = str(config_data['tokenizer_name'])
self.temperature = float(config_data['temperature'])
self.top_p = float(config_data['top_p'])
self.min_p = float(config_data['min_p'])
self.frequency_penalty = float(config_data['frequency_penalty'])
self.presence_penalty = float(config_data['presence_penalty'])
self.seed = int(config_data['seed'])
class CommonConfiguration:
def __init__(self, config_data):
self.log_file_path = str(config_data['log_file_path'])
self.log_sql_path = str(config_data['log_sql_path'])
class Configuration:
"""Encapsulates all configuration parameters."""
def __init__(self, config_file_path: Optional[str] = None):
"""Creates an instance of the class.
There is 1 possibility to load configuration data:
- from configuration file using a path;
If attribute is not None, the configuration file is used.
Args:
config_file_path: A path to config file to load configuration data from.
"""
if config_file_path is not None:
self._load_from_config(config_file_path)
else:
raise ValueError('At least one of config_path must be not None.')
def _load_data(self, data: Dict[str, Any]):
"""Loads configuration data from dictionary.
Args:
data: A configuration dictionary to load configuration data from.
"""
self.common_config = CommonConfiguration(data['common'])
self.db_config = DataBaseConfiguration(data['bd'])
self.llm_config = LLMConfiguration(data['llm'])
def _load_from_config(self, config_file_path: str):
"""Reads configuration file and form configuration dictionary.
Args:
config_file_path: A configuration dictionary to load configuration data from.
"""
data = parse_config(config_file_path)
self._load_data(data)
|