generic-chatbot-backend / scripts /analyze_entities.py
muryshev's picture
update
86c402d
raw
history blame
4.64 kB
import argparse
import logging
from typing import Optional
import numpy as np
from sqlalchemy.orm import Session
import common.dependencies as DI
from common.configuration import Configuration
from components.dbo.models.entity import EntityModel
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def analyze_embeddings(embeddings: list[Optional[np.ndarray]]) -> dict:
"""
Анализ эмбеддингов.
Args:
embeddings: Список эмбеддингов
Returns:
dict: Статистика по эмбеддингам
"""
valid_embeddings = [e for e in embeddings if e is not None]
if not valid_embeddings:
return {
"total": len(embeddings),
"valid": 0,
"shapes": {},
"mean_norm": None,
"std_norm": None
}
shapes = {}
norms = []
for e in valid_embeddings:
shape_str = str(e.shape)
shapes[shape_str] = shapes.get(shape_str, 0) + 1
norms.append(np.linalg.norm(e))
return {
"total": len(embeddings),
"valid": len(valid_embeddings),
"shapes": shapes,
"mean_norm": float(np.mean(norms)),
"std_norm": float(np.std(norms))
}
def analyze_entities(
dataset_id: int,
db: Session,
config: Configuration,
) -> None:
"""
Анализ сущностей в датасете.
Args:
dataset_id: ID датасета
db: Сессия базы данных
config: Конфигурация приложения
"""
# Получаем все сущности
entities = (
db.query(EntityModel)
.filter(EntityModel.dataset_id == dataset_id)
.all()
)
if not entities:
logger.error(f"No entities found for dataset {dataset_id}")
return
# Базовая статистика
logger.info(f"Total entities: {len(entities)}")
logger.info(f"Entity types: {set(e.entity_type for e in entities)}")
# Статистика по типам
type_stats = {}
for e in entities:
if e.entity_type not in type_stats:
type_stats[e.entity_type] = 0
type_stats[e.entity_type] += 1
logger.info("Entities per type:")
for t, count in type_stats.items():
logger.info(f" {t}: {count}")
# Анализ эмбеддингов
embeddings = [e.embedding for e in entities]
embedding_stats = analyze_embeddings(embeddings)
logger.info("\nEmbedding statistics:")
logger.info(f" Total embeddings: {embedding_stats['total']}")
logger.info(f" Valid embeddings: {embedding_stats['valid']}")
logger.info(" Shapes:")
for shape, count in embedding_stats['shapes'].items():
logger.info(f" {shape}: {count}")
if embedding_stats['mean_norm'] is not None:
logger.info(f" Mean norm: {embedding_stats['mean_norm']:.4f}")
logger.info(f" Std norm: {embedding_stats['std_norm']:.4f}")
# Анализ текстов
text_lengths = [len(e.text) for e in entities]
search_text_lengths = [len(e.in_search_text) if e.in_search_text else 0 for e in entities]
logger.info("\nText statistics:")
logger.info(f" Mean text length: {np.mean(text_lengths):.2f}")
logger.info(f" Std text length: {np.std(text_lengths):.2f}")
logger.info(f" Mean search text length: {np.mean(search_text_lengths):.2f}")
logger.info(f" Std search text length: {np.std(search_text_lengths):.2f}")
# Примеры сущностей
logger.info("\nExample entities:")
for e in entities[:5]:
logger.info(f" ID: {e.uuid}")
logger.info(f" Name: {e.name}")
logger.info(f" Type: {e.entity_type}")
logger.info(f" Embedding: {e.embedding}")
if e.embedding is not None:
logger.info(f" Embedding shape: {e.embedding.shape}")
logger.info(" ---")
def main() -> None:
"""Точка входа скрипта."""
parser = argparse.ArgumentParser(description="Analyze entities in dataset")
parser.add_argument("dataset_id", type=int, help="Dataset ID")
parser.add_argument(
"--config",
type=str,
default="config_dev.yaml",
help="Path to config file",
)
args = parser.parse_args()
config = Configuration(args.config)
db = DI.get_db()
with db() as session:
try:
analyze_entities(args.dataset_id, session, config)
finally:
session.close()
if __name__ == "__main__":
main()