import json import logging import os import shutil import zipfile from datetime import datetime from multiprocessing import Process from pathlib import Path from typing import Optional from threading import Lock import pandas as pd import torch from fastapi import BackgroundTasks, HTTPException, UploadFile from common.common import get_source_format from common.configuration import Configuration from components.embedding_extraction import EmbeddingExtractor from components.parser.features.documents_dataset import DocumentsDataset from components.parser.pipeline import DatasetCreationPipeline from components.parser.xml.structures import ParsedXML from components.parser.xml.xml_parser import XMLParser from sqlalchemy.orm import Session from components.dbo.models.acronym import Acronym from components.dbo.models.dataset import Dataset from components.dbo.models.dataset_document import DatasetDocument from components.dbo.models.document import Document from schemas.dataset import Dataset as DatasetSchema from schemas.dataset import DatasetExpanded as DatasetExpandedSchema from schemas.dataset import DatasetProcessing from schemas.dataset import DocumentsPage as DocumentsPageSchema from schemas.dataset import SortQueryList from schemas.document import Document as DocumentSchema logger = logging.getLogger(__name__) class DatasetService: """ Сервис для работы с датасетами. """ def __init__( self, vectorizer: EmbeddingExtractor, config: Configuration, db: Session ) -> None: logger.info("DatasetService initializing") self.db = db self.config = config self.parser = XMLParser() self.vectorizer = vectorizer self.regulations_path = Path(config.db_config.files.regulations_path) self.documents_path = Path(config.db_config.files.documents_path) self.tmp_path= Path(os.environ.get("APP_TMP_PATH", '.')) logger.info("DatasetService initialized") def get_dataset( self, dataset_id: int, page: int = 1, page_size: int = 20, search: str = '', sort: SortQueryList = [], ) -> DatasetExpandedSchema: """ Получить пагинированную информацию о датасете и его документах. """ logger.info( f"Getting dataset {dataset_id} (page={page}, size={page_size}, search='{search}')" ) self.raise_if_processing() with self.db() as session: dataset: Dataset = ( session.query(Dataset).filter(Dataset.id == dataset_id).first() ) if not dataset: raise HTTPException(status_code=404, detail='Dataset not found') query = ( session.query(Document) .join(DatasetDocument, DatasetDocument.document_id == Document.id) .filter(DatasetDocument.dataset_id == dataset_id) .filter( Document.status.in_(['Актуальный', 'Требует актуализации', 'Упразднён']) ) .filter(Document.title.like(f'%{search}%')) ) query = self.sort_documents(query, sort) documents = query.offset((page - 1) * page_size).limit(page_size).all() total_documents = ( session.query(Document) .join(DatasetDocument, DatasetDocument.document_id == Document.id) .filter(DatasetDocument.dataset_id == dataset_id) .filter( Document.status.in_(['Актуальный', 'Требует актуализации', 'Упразднён']) ) .filter(Document.title.like(f'%{search}%')) .count() ) dataset_expanded = DatasetExpandedSchema( id=dataset.id, name=dataset.name, isDraft=dataset.is_draft, isActive=dataset.is_active, dateCreated=dataset.date_created, data=DocumentsPageSchema( page=[ DocumentSchema( id=document.id, name=document.title, owner=document.owner, status=document.status, ) for document in documents ], total=total_documents, pageNumber=page, pageSize=page_size, ), ) return dataset_expanded def get_datasets(self) -> list[DatasetSchema]: """ Получить список всех датасетов. """ self.raise_if_processing() with self.db() as session: datasets: list[Dataset] = session.query(Dataset).all() return [ DatasetSchema( id=dataset.id, name=dataset.name, isDraft=dataset.is_draft, isActive=dataset.is_active, dateCreated=dataset.date_created ) for dataset in datasets ] def create_draft(self, parent_id: int) -> DatasetSchema: """ Создать черновик датасета на основе родительского датасета. """ logger.info(f"Creating draft dataset from parent {parent_id}") self.raise_if_processing() with self.db() as session: parent = session.query(Dataset).filter(Dataset.id == parent_id).first() if not parent: raise HTTPException(status_code=404, detail='Parent dataset not found') if parent.is_draft: raise HTTPException(status_code=400, detail='Parent dataset is draft') date = datetime.now() dataset = Dataset( name=f"{date.strftime('%Y-%m-%d %H:%M:%S')}", is_draft=True, is_active=False, ) parent_documents = ( session.query(DatasetDocument) .filter(DatasetDocument.dataset_id == parent_id) .all() ) new_dataset_documents = [ DatasetDocument( dataset_id=dataset.id, document_id=document.id, ) for document in parent_documents ] dataset.documents = new_dataset_documents session.add(dataset) session.commit() session.refresh(dataset) return self.get_dataset(dataset.id) def delete_dataset(self, dataset_id: int) -> None: """ Удалить черновик датасета. """ logger.info(f"Deleting dataset {dataset_id}") self.raise_if_processing() with self.db() as session: dataset: Dataset = session.query(Dataset).filter(Dataset.id == dataset_id).first() if not dataset: raise HTTPException(status_code=404, detail='Dataset not found') if dataset.name == 'default': raise HTTPException( status_code=400, detail='Default dataset cannot be deleted' ) if dataset.is_active: raise HTTPException( status_code=403, detail='Active dataset cannot be deleted' ) session.delete(dataset) session.commit() def apply_draft_task(self, dataset_id: int): """ Метод для выполнения в отдельном процессе. """ try: with self.db() as session: dataset = session.query(Dataset).filter(Dataset.id == dataset_id).first() if not dataset: raise HTTPException(status_code=404, detail=f"Dataset with id {dataset_id} not found") active_dataset = session.query(Dataset).filter(Dataset.is_active == True).first() self.apply_draft(dataset, session) dataset.is_draft = False dataset.is_active = True if active_dataset: active_dataset.is_active = False session.commit() except Exception as e: logger.error(f"Error applying draft: {e}") raise def activate_dataset(self, dataset_id: int, background_tasks: BackgroundTasks) -> DatasetExpandedSchema: """ Активировать датасет в фоновой задаче. """ logger.info(f"Activating dataset {dataset_id}") self.raise_if_processing() with self.db() as session: dataset = ( session.query(Dataset).filter(Dataset.id == dataset_id).first() ) active_dataset = session.query(Dataset).filter(Dataset.is_active).first() if not dataset: raise HTTPException(status_code=404, detail='Dataset not found') if dataset.is_active: raise HTTPException(status_code=400, detail='Dataset is already active') if dataset.is_draft: background_tasks.add_task(self.apply_draft_task, dataset_id) else: dataset.is_active = True if active_dataset: active_dataset.is_active = False session.commit() return self.get_dataset(dataset_id) def get_processing(self) -> DatasetProcessing: """ Получить информацию о процессе обработки датасета. """ tmp_file = Path(self.tmp_path / 'tmp.json') if tmp_file.exists(): try: with open(tmp_file, 'r', encoding='utf-8') as f: info = json.load(f) except Exception as e: logger.warning(f"Error loading processing info: {e}") return DatasetProcessing( status='in_progress', total=None, current=None, datasetName=None, ) with self.db() as session: dataset_name = ( session.query(Dataset) .filter(Dataset.id == info['dataset_id']) .first() .name ) return DatasetProcessing( status='in_progress', total=info['total'], current=info['current'], datasetName=dataset_name, ) return DatasetProcessing( status='ready', total=None, current=None, datasetName=None, ) def upload_zip(self, file: UploadFile) -> DatasetExpandedSchema: """ Загрузить архив с датасетом. """ logger.info(f"Uploading ZIP file {file.filename}") self.raise_if_processing() file_location = Path(self.tmp_path / 'tmp.json' / 'tmp.zip') logger.debug(f"Saving uploaded file to {file_location}") file_location.parent.mkdir(parents=True, exist_ok=True) with open(file_location, 'wb') as f: f.write(file.file.read()) with zipfile.ZipFile(file_location, 'r') as zip_ref: zip_ref.extractall(file_location.parent) dataset = self.create_dataset_from_directory( is_default=False, directory_with_xmls=file_location.parent, directory_with_ready_dataset=None, ) file_location.unlink() shutil.rmtree(file_location.parent) return self.get_dataset(dataset.id) def apply_draft( self, dataset: Dataset, session, ) -> None: """ Сохранить черновик как полноценный датасет. """ torch.set_num_threads(1) logger.info(f"Applying draft dataset {dataset.id}") if not dataset.is_draft: logger.error(f"Dataset {dataset.id} is not a draft") raise HTTPException( status_code=400, detail='Dataset is not draft but trying to apply it' ) TMP_PATH = Path(self.tmp_path / 'tmp.json') def progress_callback(current: int, total: int) -> None: log_step = total // 100 if log_step == 0: log_step = 1 if current % log_step != 0: return if (total > 10) and (current % (total // 10) == 0): logger.info( f"Processing dataset {dataset.id}: {current}/{total}" ) with open(TMP_PATH, 'w', encoding='utf-8') as f: json.dump( { 'total': total, 'current': current, 'dataset_id': dataset.id, }, f, ) TMP_PATH.touch() document_ids = [ doc_dataset_link.document_id for doc_dataset_link in dataset.documents ] document_formats = [ doc_dataset_link.document.source_format for doc_dataset_link in dataset.documents ] prepared_abbreviations = ( session.query(Acronym).filter(Acronym.document_id.in_(document_ids)).all() ) pipeline = DatasetCreationPipeline( dataset_id=dataset.id, vectorizer=self.vectorizer, prepared_abbreviations=prepared_abbreviations, document_ids=document_ids, document_formats=document_formats, datasets_path=self.regulations_path, documents_path=self.documents_path, save_intermediate_files=True, ) progress_callback(0, 1000) try: pipeline.run(progress_callback) except Exception as e: logger.error(f"Error running pipeline: {e}") raise HTTPException(status_code=500, detail=str(e)) finally: TMP_PATH.unlink() def raise_if_processing(self) -> None: """ Поднять ошибку, если процесс обработки датасета еще не завершен. """ if self.get_processing().status == 'in_progress': logger.error("Dataset processing is already in progress") raise HTTPException( status_code=409, detail='Dataset processing is in progress' ) def create_dataset_from_directory( self, is_default: bool, directory_with_xmls: Path, directory_with_ready_dataset: Path | None = None, ) -> Dataset: """ Создать датасет из директории с xml-документами. Args: is_default: Создать ли датасет по умолчанию. directory_with_xmls: Путь к директории с xml-документами. directory_with_processed_dataset: Путь к директории с обработанным датасетом - если не передан, будет произведена полная обработка (например, при создании датасета из скриптов). Returns: Dataset: Созданный датасет. """ logger.info( f"Creating {'default' if is_default else 'new'} dataset from directory {directory_with_xmls}" ) with self.db() as session: documents = [] date = datetime.now() name = 'default' if is_default else f'{date.strftime("%Y-%m-%d %H:%M:%S")}' dataset = Dataset( name=name, is_draft=True if directory_with_ready_dataset is None else False, is_active=True if is_default else False, ) session.add(dataset) for subpath in self._get_recursive_dirlist(directory_with_xmls): document, relation = self._create_document( directory_with_xmls, subpath, dataset ) if document is None: continue documents.append(document) session.add(document) session.add(relation) logger.info(f"Created {len(documents)} documents") session.flush() if directory_with_ready_dataset is not None: shutil.move( directory_with_ready_dataset, self.regulations_path / str(dataset.id), ) logger.info( f"Moved ready dataset to {self.regulations_path / str(dataset.id)}" ) self.documents_path.mkdir(parents=True, exist_ok=True) for document in documents: session.refresh(document) old_filename = document.filename new_filename = '{}.{}'.format(document.id, document.source_format) shutil.copy( directory_with_xmls / old_filename, self.documents_path / new_filename ) document.filename = new_filename logger.info(f"Documents renamed with ids") session.commit() session.refresh(dataset) dataset_id = dataset.id logger.info(f"Dataset {dataset_id} created") df = self.dataset_to_pandas(dataset_id) (self.regulations_path / str(dataset_id)).mkdir(parents=True, exist_ok=True) df.to_csv( self.regulations_path / str(dataset_id) / 'documents.csv', index=False ) return dataset def create_empty_dataset(self, is_default: bool) -> Dataset: """ Создать пустой датасет. """ with self.db() as session: name = ( 'default' if is_default else f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}' ) dataset = Dataset( name=name, is_active=True if is_default else False, is_draft=False, ) session.add(dataset) session.commit() session.refresh(dataset) self.documents_path.mkdir(exist_ok=True) dataset_id = dataset.id folder = self.regulations_path / str(dataset_id) folder.mkdir(parents=True, exist_ok=True) pickle_creator = DocumentsDataset([]) pickle_creator.to_pickle(folder / 'dataset.pkl') df = self.dataset_to_pandas(dataset_id) df.to_csv(folder / 'documents.csv', index=False) return dataset @staticmethod def _get_recursive_dirlist(path: Path) -> list[Path]: """ Возвращает список всех xml и docx файлов на всех уровнях вложенности. Args: path: Путь к директории. Returns: list[Path]: Список путей к xml-файлам относительно path. """ xml_files = set() #set для отбрасывания неуникальных путей for ext in ('*.xml', '*.XML', '*.docx', '*.DOCX'): xml_files.update(path.glob(f'**/{ext}')) return [p.relative_to(path) for p in xml_files] def _create_document( self, documents_path: Path, subpath: os.PathLike, dataset: Dataset, ) -> tuple[Document | None, DatasetDocument | None]: """ Создаёт документ в базе данных. Args: xmls_path: Путь к директории с xml-документами. subpath: Путь к xml-документу относительно xmls_path. dataset: Датасет, к которому относится документ. Returns: tuple[Document, DatasetDocument]: Кортеж из документа и его связи с датасетом. """ logger.debug(f"Creating document from {subpath}") try: source_format = get_source_format(str(subpath)) parsed_xml: ParsedXML | None = self.parser.parse( documents_path / subpath, include_content=False ) if not parsed_xml: logger.warning(f"Failed to parse file: {subpath}") return None, None document = Document( filename=str(subpath), title=parsed_xml.name, status=parsed_xml.status, owner=parsed_xml.owner, source_format=source_format, ) relation = DatasetDocument( document=document, dataset=dataset, ) return document, relation except Exception as e: logger.error(f"Error creating document from {subpath}: {e}") return None, None def dataset_to_pandas(self, dataset_id: int) -> pd.DataFrame: """ Преобразовать датасет в pandas DataFrame. """ with self.db() as session: links = ( session.query(DatasetDocument) .filter(DatasetDocument.dataset_id == dataset_id) .all() ) documents = ( session.query(Document) .filter(Document.id.in_([link.document_id for link in links])) .all() ) return pd.DataFrame( [ { 'id': document.id, 'filename': document.filename, 'title': document.title, 'status': document.status, 'owner': document.owner, } for document in documents ], columns=['id', 'filename', 'title', 'status', 'owner'], ) def get_current_dataset(self) -> Dataset | None: with self.db() as session: print(session) result = session.query(Dataset).filter(Dataset.is_active == True).first() return result def get_default_dataset(self) -> Dataset | None: with self.db() as session: result = session.query(Dataset).filter(Dataset.name == 'default').first() return result def sort_documents( self, query: "Query", # type: ignore sort: SortQueryList, ) -> "Query": # type: ignore """ Сортирует документы по заданным полям и направлениям сортировки. """ if sort and (len(sort.sorts) > 0): for sort_query in sort.sorts: field = sort_query.field direction = sort_query.direction if field == 'name': column = Document.title elif field == 'status': column = Document.status elif field == 'owner': column = Document.owner elif field == 'id': column = Document.id else: raise HTTPException( status_code=400, detail=f'Invalid sort field: {field}' ) query = query.order_by( column.desc() if direction.lower() == 'desc' else column ) else: query = query.order_by(Document.id.desc()) # Default sorting return query