from typing import Optional from datetime import datetime from pydantic import BaseModel class LLMConfig(BaseModel): is_default: bool id: int model: str temperature: float top_p: float min_p: float frequency_penalty: float presence_penalty: float n_predict: int seed: int date_created: datetime class Config: json_schema_extra = { 'example': { 'is_default': True, 'model': 'meta-llama/Llama-3.3-70B-Instruct', 'temperature': 0.14, 'top_p': 0.95, 'min_p': 0.05, 'frequency_penalty': -0.001, 'presence_penalty': 1.3, 'n_predict': 1000, 'seed': 42 } } class LLMConfigCreateScheme(BaseModel): is_default: bool model: str temperature: float top_p: float min_p: float frequency_penalty: float presence_penalty: float n_predict: int seed: int class Config: json_schema_extra = { 'example': { 'is_default': True, 'model': 'meta-llama/Llama-3.3-70B-Instruct', 'temperature': 0.14, 'top_p': 0.95, 'min_p': 0.05, 'frequency_penalty': -0.001, 'presence_penalty': 1.3, 'n_predict': 1000, 'seed': 42 } }