File size: 7,087 Bytes
36d1bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download#, Repository
import huggingface_hub
import gc
import os.path
import xml.etree.ElementTree as ET
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime, timedelta
from llm_backend import LlmBackend
import json

llm = LlmBackend()
_lock = threading.Lock()
    
SYSTEM_PROMPT = os.environ.get('SYSTEM_PROMPT') or "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."

CONTEXT_SIZE = os.environ.get('CONTEXT_SIZE') or 500 
ENABLE_GPU = os.environ.get('ENABLE_GPU') or False
GPU_LAYERS = os.environ.get('GPU_LAYERS') or 0
N_GQA = os.environ.get('N_GQA') or None #must be set to 8 for 70b models
CHAT_FORMAT = os.environ.get('CHAT_FORMAT') or 'llama-2'

# Create a lock object
lock = threading.Lock()

app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG)

# Variable to store the last request time
last_request_time = datetime.now()

# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf"  # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"

#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"

#epo_name = "IlyaGusev/saiga2_70b_gguf"
#model_name = "ggml-model-q4_1.gguf"

repo_name = "IlyaGusev/saiga2_7b_gguf"
model_name = "model-q4_K.gguf"
local_dir = '.'

if os.path.isdir('/data'):
    app.logger.info('Persistent storage enabled')

model = None

MODEL_PATH = snapshot_download(repo_id=repo_name, allow_patterns=model_name) + '/' + model_name
app.logger.info('Model path: ' + MODEL_PATH)

DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
DATA_FILENAME = "data-saiga-cuda-release.xml"
DATA_FILE = os.path.join("dataset", DATA_FILENAME)

HF_TOKEN = os.environ.get("HF_TOKEN")
app.logger.info("hfh: "+huggingface_hub.__version__)

# repo = Repository(
#     local_dir="dataset", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
# )



# def log(req: str = '', resp: str = ''):
#     if req or resp:
#         element = ET.Element("row", {"time": str(datetime.now()) })
#         req_element = ET.SubElement(element, "request")
#         req_element.text = req
#         resp_element = ET.SubElement(element, "response")
#         resp_element.text = resp
    
#         with open(DATA_FILE, "ab+") as xml_file:
#             xml_file.write(ET.tostring(element, encoding="utf-8"))
        
#         commit_url = repo.push_to_hub()
#         app.logger.info(commit_url)

def generate_tokens(model, generator):
    global stop_generation
    app.logger.info('generate_tokens started')
    with lock:
        try:
            for token in generator:            
                if token == model.token_eos() or stop_generation:
                    stop_generation = False
                    app.logger.info('End generating')
                    yield b''  # End of chunk
                    break
                    
                token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
                yield token_str 
        except Exception as e:
            app.logger.info('generator exception')
            app.logger.info(e)
            yield b''  # End of chunk

@app.route('/change_context_size', methods=['GET'])
def handler_change_context_size():
    global stop_generation, model
    stop_generation = True

    new_size = int(request.args.get('size', CONTEXT_SIZE))
    init_model(new_size, ENABLE_GPU, GPU_LAYERS)
    
    return Response('Size changed', content_type='text/plain')   
    
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
    global stop_generation
    stop_generation = True
    return Response('Stopped', content_type='text/plain')        
                
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
    app.logger.info('unknown method: '+request.method)
    try:
        request_payload = request.get_json()
        app.logger.info('payload: '+request.get_json())
    except Exception as e:
        app.logger.info('payload empty')

    return Response('What do you want?', content_type='text/plain')

response_tokens = bytearray()
def generate_and_log_tokens(user_request, generator):
    global response_tokens, last_request_time
    for token in llm.generate_tokens(generator):
        if token == b'': # or (max_new_tokens is not None and i >= max_new_tokens):
            last_request_time = datetime.now()
            # log(json.dumps(user_request), response_tokens.decode("utf-8", errors="ignore"))
            response_tokens = bytearray()
            break
        response_tokens.extend(token)
        yield token
            
@app.route('/', methods=['POST'])
def generate_response():

    app.logger.info('generate_response')
    with _lock:
        if not llm.is_model_loaded():
            app.logger.info('model loading')    
            init_model()
        
    data = request.get_json()
    app.logger.info(data)
    messages = data.get("messages", [])
    preprompt = data.get("preprompt", "")
    parameters = data.get("parameters", {})
    
    # Extract parameters from the request
    p = {
        'temperature': parameters.get("temperature", 0.01),
        'truncate': parameters.get("truncate", 1000),
        'max_new_tokens': parameters.get("max_new_tokens", 1024),
        'top_p': parameters.get("top_p", 0.85),
        'repetition_penalty': parameters.get("repetition_penalty", 1.2),
        'top_k': parameters.get("top_k", 30),
        'return_full_text': parameters.get("return_full_text", False)
    }
    
    generator = llm.create_chat_generator_for_saiga(messages=messages, parameters=p)
    app.logger.info('Generator created')


    

    # Use Response to stream tokens
    return Response(generate_and_log_tokens(user_request='1', generator=generator), content_type='text/plain', status=200, direct_passthrough=True)

def init_model():
    llm.load_model(model_path=MODEL_PATH, context_size=CONTEXT_SIZE, enable_gpu=ENABLE_GPU, gpu_layer_number=GPU_LAYERS, n_gqa=N_GQA)
    
# Function to check if no requests were made in the last 5 minutes
def check_last_request_time():
    global last_request_time
    current_time = datetime.now()
    if (current_time - last_request_time).total_seconds() > 300:  # 5 minutes in seconds
        # Perform the action (e.g., set a variable)
        llm.unload_model()
        app.logger.info(f"Model unloaded at {current_time}")
    else:
        app.logger.info(f"No action needed at {current_time}")


if __name__ == "__main__":
    scheduler = BackgroundScheduler()
    scheduler.add_job(check_last_request_time, trigger='interval', minutes=1)
    scheduler.start()
    
    init_model()
    
    app.run(host="0.0.0.0", port=7860, debug=True, threaded=True)