Spaces:
Runtime error
Runtime error
Another bunch of fixes
Browse files- app.py +18 -38
- llm_backend.py +53 -15
app.py
CHANGED
@@ -11,12 +11,16 @@ from apscheduler.schedulers.background import BackgroundScheduler
|
|
11 |
from datetime import datetime, timedelta
|
12 |
from llm_backend import LlmBackend
|
13 |
import json
|
|
|
|
|
14 |
|
15 |
llm = LlmBackend()
|
16 |
_lock = threading.Lock()
|
17 |
|
18 |
SYSTEM_PROMPT = os.environ.get('SYSTEM_PROMPT') or "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
|
19 |
-
CONTEXT_SIZE = os.environ.get('CONTEXT_SIZE') or 500
|
|
|
|
|
20 |
ENABLE_GPU = os.environ.get('ENABLE_GPU') or False
|
21 |
GPU_LAYERS = os.environ.get('GPU_LAYERS') or 0
|
22 |
N_GQA = os.environ.get('N_GQA') or None #must be set to 8 for 70b models
|
@@ -24,9 +28,12 @@ CHAT_FORMAT = os.environ.get('CHAT_FORMAT') or 'llama-2'
|
|
24 |
|
25 |
# Create a lock object
|
26 |
lock = threading.Lock()
|
|
|
27 |
|
28 |
-
app
|
29 |
-
|
|
|
|
|
30 |
app.logger.setLevel(logging.DEBUG)
|
31 |
|
32 |
# Variable to store the last request time
|
@@ -51,7 +58,7 @@ if os.path.isdir('/data'):
|
|
51 |
|
52 |
model = None
|
53 |
|
54 |
-
MODEL_PATH = snapshot_download(repo_id=repo_name, allow_patterns=model_name) + '/' + model_name
|
55 |
app.logger.info('Model path: ' + MODEL_PATH)
|
56 |
|
57 |
DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
|
@@ -81,25 +88,6 @@ app.logger.info("hfh: "+huggingface_hub.__version__)
|
|
81 |
# commit_url = repo.push_to_hub()
|
82 |
# app.logger.info(commit_url)
|
83 |
|
84 |
-
def generate_tokens(model, generator):
|
85 |
-
global stop_generation
|
86 |
-
app.logger.info('generate_tokens started')
|
87 |
-
with lock:
|
88 |
-
try:
|
89 |
-
for token in generator:
|
90 |
-
if token == model.token_eos() or stop_generation:
|
91 |
-
stop_generation = False
|
92 |
-
app.logger.info('End generating')
|
93 |
-
yield b'' # End of chunk
|
94 |
-
break
|
95 |
-
|
96 |
-
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
|
97 |
-
yield token_str
|
98 |
-
except Exception as e:
|
99 |
-
app.logger.info('generator exception')
|
100 |
-
app.logger.info(e)
|
101 |
-
yield b'' # End of chunk
|
102 |
-
|
103 |
@app.route('/change_context_size', methods=['GET'])
|
104 |
def handler_change_context_size():
|
105 |
global stop_generation, model
|
@@ -142,12 +130,7 @@ def generate_and_log_tokens(user_request, generator):
|
|
142 |
@app.route('/', methods=['POST'])
|
143 |
def generate_response():
|
144 |
|
145 |
-
app.logger.info('generate_response')
|
146 |
-
with _lock:
|
147 |
-
if not llm.is_model_loaded():
|
148 |
-
app.logger.info('model loading')
|
149 |
-
init_model()
|
150 |
-
|
151 |
data = request.get_json()
|
152 |
app.logger.info(data)
|
153 |
messages = data.get("messages", [])
|
@@ -165,12 +148,9 @@ def generate_response():
|
|
165 |
'return_full_text': parameters.get("return_full_text", False)
|
166 |
}
|
167 |
|
168 |
-
generator = llm.create_chat_generator_for_saiga(messages=messages, parameters=p)
|
169 |
app.logger.info('Generator created')
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
# Use Response to stream tokens
|
175 |
return Response(generate_and_log_tokens(user_request='1', generator=generator), content_type='text/plain', status=200, direct_passthrough=True)
|
176 |
|
@@ -182,7 +162,6 @@ def check_last_request_time():
|
|
182 |
global last_request_time
|
183 |
current_time = datetime.now()
|
184 |
if (current_time - last_request_time).total_seconds() > 300: # 5 minutes in seconds
|
185 |
-
# Perform the action (e.g., set a variable)
|
186 |
llm.unload_model()
|
187 |
app.logger.info(f"Model unloaded at {current_time}")
|
188 |
else:
|
@@ -190,10 +169,11 @@ def check_last_request_time():
|
|
190 |
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
-
scheduler = BackgroundScheduler()
|
194 |
-
scheduler.add_job(check_last_request_time, trigger='interval', minutes=1)
|
195 |
-
scheduler.start()
|
196 |
|
197 |
init_model()
|
198 |
|
199 |
-
app.run(host="0.0.0.0", port=7860, debug=True, threaded=True)
|
|
|
|
|
|
|
|
|
|
11 |
from datetime import datetime, timedelta
|
12 |
from llm_backend import LlmBackend
|
13 |
import json
|
14 |
+
import log
|
15 |
+
import sys
|
16 |
|
17 |
llm = LlmBackend()
|
18 |
_lock = threading.Lock()
|
19 |
|
20 |
SYSTEM_PROMPT = os.environ.get('SYSTEM_PROMPT') or "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
|
21 |
+
CONTEXT_SIZE = os.environ.get('CONTEXT_SIZE') or 500
|
22 |
+
HF_CACHE_DIR = os.environ.get('HF_CACHE_DIR') or '/root/.cache'
|
23 |
+
USE_SYSTEM_PROMPT = os.environ.get('USE_SYSTEM_PROMPT') or False
|
24 |
ENABLE_GPU = os.environ.get('ENABLE_GPU') or False
|
25 |
GPU_LAYERS = os.environ.get('GPU_LAYERS') or 0
|
26 |
N_GQA = os.environ.get('N_GQA') or None #must be set to 8 for 70b models
|
|
|
28 |
|
29 |
# Create a lock object
|
30 |
lock = threading.Lock()
|
31 |
+
app = Flask('llm_api')
|
32 |
|
33 |
+
app.logger.handlers.clear()
|
34 |
+
handler = logging.StreamHandler(sys.stdout)
|
35 |
+
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
36 |
+
app.logger.addHandler(handler)
|
37 |
app.logger.setLevel(logging.DEBUG)
|
38 |
|
39 |
# Variable to store the last request time
|
|
|
58 |
|
59 |
model = None
|
60 |
|
61 |
+
MODEL_PATH = snapshot_download(repo_id=repo_name, allow_patterns=model_name, cache_dir=HF_CACHE_DIR) + '/' + model_name
|
62 |
app.logger.info('Model path: ' + MODEL_PATH)
|
63 |
|
64 |
DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
|
|
|
88 |
# commit_url = repo.push_to_hub()
|
89 |
# app.logger.info(commit_url)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
@app.route('/change_context_size', methods=['GET'])
|
92 |
def handler_change_context_size():
|
93 |
global stop_generation, model
|
|
|
130 |
@app.route('/', methods=['POST'])
|
131 |
def generate_response():
|
132 |
|
133 |
+
app.logger.info('generate_response called')
|
|
|
|
|
|
|
|
|
|
|
134 |
data = request.get_json()
|
135 |
app.logger.info(data)
|
136 |
messages = data.get("messages", [])
|
|
|
148 |
'return_full_text': parameters.get("return_full_text", False)
|
149 |
}
|
150 |
|
151 |
+
generator = llm.create_chat_generator_for_saiga(messages=messages, parameters=p, use_system_prompt=USE_SYSTEM_PROMPT)
|
152 |
app.logger.info('Generator created')
|
153 |
|
|
|
|
|
|
|
154 |
# Use Response to stream tokens
|
155 |
return Response(generate_and_log_tokens(user_request='1', generator=generator), content_type='text/plain', status=200, direct_passthrough=True)
|
156 |
|
|
|
162 |
global last_request_time
|
163 |
current_time = datetime.now()
|
164 |
if (current_time - last_request_time).total_seconds() > 300: # 5 minutes in seconds
|
|
|
165 |
llm.unload_model()
|
166 |
app.logger.info(f"Model unloaded at {current_time}")
|
167 |
else:
|
|
|
169 |
|
170 |
|
171 |
if __name__ == "__main__":
|
|
|
|
|
|
|
172 |
|
173 |
init_model()
|
174 |
|
175 |
+
app.run(host="0.0.0.0", port=7860, debug=True, threaded=True)
|
176 |
+
|
177 |
+
scheduler = BackgroundScheduler()
|
178 |
+
scheduler.add_job(check_last_request_time, trigger='interval', minutes=1)
|
179 |
+
scheduler.start()
|
llm_backend.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
from llama_cpp import Llama
|
2 |
import gc
|
3 |
import threading
|
|
|
|
|
4 |
|
|
|
|
|
5 |
class LlmBackend:
|
6 |
|
7 |
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
|
@@ -18,6 +22,7 @@ class LlmBackend:
|
|
18 |
|
19 |
_instance = None
|
20 |
_model = None
|
|
|
21 |
_lock = threading.Lock()
|
22 |
|
23 |
def __new__(cls):
|
@@ -30,6 +35,14 @@ class LlmBackend:
|
|
30 |
return self._model is not None
|
31 |
|
32 |
def load_model(self, model_path, context_size=2000, enable_gpu=True, gpu_layer_number=35, n_gqa=8, chat_format='llama-2'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if self._model is not None:
|
35 |
self.unload_model()
|
@@ -44,10 +57,11 @@ class LlmBackend:
|
|
44 |
#n_batch=100,
|
45 |
logits_all=True,
|
46 |
#n_threads=12,
|
47 |
-
verbose=
|
48 |
n_gpu_layers=gpu_layer_number,
|
49 |
n_gqa=n_gqa #must be set for 70b models
|
50 |
)
|
|
|
51 |
return self._model
|
52 |
else:
|
53 |
self._model = Llama(
|
@@ -58,9 +72,10 @@ class LlmBackend:
|
|
58 |
#n_batch=100,
|
59 |
logits_all=True,
|
60 |
#n_threads=12,
|
61 |
-
verbose=
|
62 |
n_gqa=n_gqa #must be set for 70b models
|
63 |
)
|
|
|
64 |
return self._model
|
65 |
|
66 |
def set_system_prompt(self, prompt):
|
@@ -68,54 +83,71 @@ class LlmBackend:
|
|
68 |
self.SYSTEM_PROMPT = prompt
|
69 |
|
70 |
def unload_model(self):
|
|
|
71 |
with self._lock:
|
72 |
if self._model is not None:
|
73 |
del self._model
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def generate_tokens(self, generator):
|
76 |
-
|
77 |
with self._lock:
|
78 |
-
|
|
|
79 |
try:
|
80 |
for token in generator:
|
81 |
if token == self._model.token_eos():
|
82 |
-
|
83 |
yield b'' # End of chunk
|
84 |
break
|
85 |
|
86 |
token_str = self._model.detokenize([token])#.decode("utf-8", errors="ignore")
|
87 |
yield token_str
|
88 |
except Exception as e:
|
89 |
-
|
90 |
-
|
91 |
yield b'' # End of chunk
|
92 |
|
93 |
def create_chat_completion(self, messages, stream=True):
|
94 |
-
|
95 |
with self._lock:
|
96 |
-
|
97 |
try:
|
98 |
return self._model.create_chat_completion(messages=messages, stream=stream)
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
|
102 |
return None
|
103 |
|
104 |
|
105 |
def get_message_tokens(self, role, content):
|
|
|
|
|
106 |
message_tokens = self._model.tokenize(content.encode("utf-8"))
|
107 |
message_tokens.insert(1, self.ROLE_TOKENS[role])
|
108 |
message_tokens.insert(2, self.LINEBREAK_TOKEN)
|
109 |
message_tokens.append(self._model.token_eos())
|
|
|
110 |
return message_tokens
|
111 |
|
112 |
def get_system_tokens(self):
|
113 |
return self.get_message_tokens(role="system", content=self.SYSTEM_PROMPT)
|
114 |
|
115 |
-
def create_chat_generator_for_saiga(self, messages, parameters):
|
116 |
-
|
117 |
with self._lock:
|
118 |
-
|
|
|
119 |
for message in messages:
|
120 |
message_tokens = self.get_message_tokens(role=message.get("from"), content=message.get("content", ""))
|
121 |
tokens.extend(message_tokens)
|
@@ -128,19 +160,25 @@ class LlmBackend:
|
|
128 |
temp=parameters['temperature'],
|
129 |
repeat_penalty=parameters['repetition_penalty']
|
130 |
)
|
|
|
131 |
return generator
|
132 |
|
133 |
def generate_tokens(self, generator):
|
|
|
134 |
with self._lock:
|
|
|
135 |
try:
|
136 |
for token in generator:
|
137 |
if token == self._model.token_eos():
|
138 |
yield b'' # End of chunk
|
|
|
139 |
break
|
140 |
|
141 |
token_str = self._model.detokenize([token])#.decode("utf-8", errors="ignore")
|
142 |
yield token_str
|
143 |
except Exception as e:
|
|
|
|
|
144 |
yield b'' # End of chunk
|
145 |
|
146 |
|
|
|
1 |
from llama_cpp import Llama
|
2 |
import gc
|
3 |
import threading
|
4 |
+
import logging
|
5 |
+
import sys
|
6 |
|
7 |
+
log = logging.getLogger('llm_api.backend')
|
8 |
+
|
9 |
class LlmBackend:
|
10 |
|
11 |
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
|
|
|
22 |
|
23 |
_instance = None
|
24 |
_model = None
|
25 |
+
_model_params = None
|
26 |
_lock = threading.Lock()
|
27 |
|
28 |
def __new__(cls):
|
|
|
35 |
return self._model is not None
|
36 |
|
37 |
def load_model(self, model_path, context_size=2000, enable_gpu=True, gpu_layer_number=35, n_gqa=8, chat_format='llama-2'):
|
38 |
+
log.info('load_model - started')
|
39 |
+
self._model_params = {}
|
40 |
+
self._model_params['model_path'] = model_path
|
41 |
+
self._model_params['context_size'] = context_size
|
42 |
+
self._model_params['enable_gpu'] = enable_gpu
|
43 |
+
self._model_params['gpu_layer_number'] = gpu_layer_number
|
44 |
+
self._model_params['n_gqa'] = n_gqa
|
45 |
+
self._model_params['chat_format'] = chat_format
|
46 |
|
47 |
if self._model is not None:
|
48 |
self.unload_model()
|
|
|
57 |
#n_batch=100,
|
58 |
logits_all=True,
|
59 |
#n_threads=12,
|
60 |
+
verbose=False,
|
61 |
n_gpu_layers=gpu_layer_number,
|
62 |
n_gqa=n_gqa #must be set for 70b models
|
63 |
)
|
64 |
+
log.info('load_model - finished')
|
65 |
return self._model
|
66 |
else:
|
67 |
self._model = Llama(
|
|
|
72 |
#n_batch=100,
|
73 |
logits_all=True,
|
74 |
#n_threads=12,
|
75 |
+
verbose=False,
|
76 |
n_gqa=n_gqa #must be set for 70b models
|
77 |
)
|
78 |
+
log.info('load_model - finished')
|
79 |
return self._model
|
80 |
|
81 |
def set_system_prompt(self, prompt):
|
|
|
83 |
self.SYSTEM_PROMPT = prompt
|
84 |
|
85 |
def unload_model(self):
|
86 |
+
log.info('unload_model - started')
|
87 |
with self._lock:
|
88 |
if self._model is not None:
|
89 |
del self._model
|
90 |
+
log.info('unload_model - finished')
|
91 |
+
|
92 |
+
def ensure_model_is_loaded(self):
|
93 |
+
log.info('ensure_model_is_loaded - started')
|
94 |
+
if not self.is_model_loaded():
|
95 |
+
log.info('ensure_model_is_loaded - model reloading')
|
96 |
+
if self._model_params is not None:
|
97 |
+
self.load_model(**self._model_params)
|
98 |
+
else:
|
99 |
+
log.info('ensure_model_is_loaded - No model config found. Reloading can not be done.')
|
100 |
+
log.info('ensure_model_is_loaded - finished')
|
101 |
+
|
102 |
def generate_tokens(self, generator):
|
103 |
+
log.info('generate_tokens - started')
|
104 |
with self._lock:
|
105 |
+
self.ensure_model_is_loaded()
|
106 |
+
|
107 |
try:
|
108 |
for token in generator:
|
109 |
if token == self._model.token_eos():
|
110 |
+
log.info('generate_tokens - finished')
|
111 |
yield b'' # End of chunk
|
112 |
break
|
113 |
|
114 |
token_str = self._model.detokenize([token])#.decode("utf-8", errors="ignore")
|
115 |
yield token_str
|
116 |
except Exception as e:
|
117 |
+
log.error('generate_tokens - error')
|
118 |
+
log.error(e)
|
119 |
yield b'' # End of chunk
|
120 |
|
121 |
def create_chat_completion(self, messages, stream=True):
|
122 |
+
log.info('create_chat_completion called')
|
123 |
with self._lock:
|
124 |
+
log.info('create_chat_completion started')
|
125 |
try:
|
126 |
return self._model.create_chat_completion(messages=messages, stream=stream)
|
127 |
except Exception as e:
|
128 |
+
log.error('create_chat_completion - error')
|
129 |
+
log.error(e)
|
130 |
return None
|
131 |
|
132 |
|
133 |
def get_message_tokens(self, role, content):
|
134 |
+
log.info('get_message_tokens - started')
|
135 |
+
self.ensure_model_is_loaded()
|
136 |
message_tokens = self._model.tokenize(content.encode("utf-8"))
|
137 |
message_tokens.insert(1, self.ROLE_TOKENS[role])
|
138 |
message_tokens.insert(2, self.LINEBREAK_TOKEN)
|
139 |
message_tokens.append(self._model.token_eos())
|
140 |
+
log.info('get_message_tokens - finished')
|
141 |
return message_tokens
|
142 |
|
143 |
def get_system_tokens(self):
|
144 |
return self.get_message_tokens(role="system", content=self.SYSTEM_PROMPT)
|
145 |
|
146 |
+
def create_chat_generator_for_saiga(self, messages, parameters, use_system_prompt=True):
|
147 |
+
log.info('create_chat_generator_for_saiga - started')
|
148 |
with self._lock:
|
149 |
+
self.ensure_model_is_loaded()
|
150 |
+
tokens = self.get_system_tokens() if use_system_prompt else []
|
151 |
for message in messages:
|
152 |
message_tokens = self.get_message_tokens(role=message.get("from"), content=message.get("content", ""))
|
153 |
tokens.extend(message_tokens)
|
|
|
160 |
temp=parameters['temperature'],
|
161 |
repeat_penalty=parameters['repetition_penalty']
|
162 |
)
|
163 |
+
log.info('create_chat_generator_for_saiga - finished')
|
164 |
return generator
|
165 |
|
166 |
def generate_tokens(self, generator):
|
167 |
+
log.info('generate_tokens - started')
|
168 |
with self._lock:
|
169 |
+
self.ensure_model_is_loaded()
|
170 |
try:
|
171 |
for token in generator:
|
172 |
if token == self._model.token_eos():
|
173 |
yield b'' # End of chunk
|
174 |
+
log.info('generate_tokens - finished')
|
175 |
break
|
176 |
|
177 |
token_str = self._model.detokenize([token])#.decode("utf-8", errors="ignore")
|
178 |
yield token_str
|
179 |
except Exception as e:
|
180 |
+
log.error('generate_tokens - error')
|
181 |
+
log.error(e)
|
182 |
yield b'' # End of chunk
|
183 |
|
184 |
|