Spaces:
Runtime error
Runtime error
Commit
·
63459a6
1
Parent(s):
24236d0
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Draw the annotations on the canvas
|
45 |
-
for annotation in annotations:
|
46 |
-
x, y, width, height = annotation.x, annotation.y, annotation.width, annotation.height
|
47 |
-
if annotation.type == 'rect':
|
48 |
-
canvas.draw_rect(x, y, width, height, stroke_color='red')
|
49 |
-
elif annotation.type == 'circle':
|
50 |
-
radius = np.sqrt(np.power(width, 2) + np.power(height, 2)) / 2
|
51 |
-
center_x, center_y = x + width / 2, y + height / 2
|
52 |
-
canvas.draw_circle(center_x, center_y, radius, stroke_color='red')
|
53 |
-
|
54 |
-
# Define the canvas mousedown event handler
|
55 |
-
def canvas_mousedown(canvas, x, y):
|
56 |
-
state['start_point'] = (x, y)
|
57 |
-
|
58 |
-
# Define the canvas mousemove event handler
|
59 |
-
def canvas_mousemove(canvas, x, y):
|
60 |
-
if state['start_point'] is not None:
|
61 |
-
start_x, start_y = state['start_point']
|
62 |
-
end_x, end_y = x, y
|
63 |
-
annotation_type = state['annotation_type']
|
64 |
-
draw_annotation(canvas, start_x, start_y, end_x, end_y, annotation_type)
|
65 |
-
|
66 |
-
# Define the canvas mouseup event handler
|
67 |
-
def canvas_mouseup(canvas, x, y):
|
68 |
-
if state['start_point'] is not None:
|
69 |
-
start_x, start_y = state['start_point']
|
70 |
-
end_x, end_y = x, y
|
71 |
-
annotation_type = state['annotation_type']
|
72 |
-
add_annotation(start_x, start_y, end_x, end_y, annotation_type)
|
73 |
-
state['start_point'] = None
|
74 |
-
|
75 |
-
# Define the add annotation function
|
76 |
-
def add_annotation(start_x, start_y, end_x, end_y, annotation_type):
|
77 |
-
# Calculate the width and height of the annotation
|
78 |
-
width = np.abs(start_x - end_x)
|
79 |
-
height = np.abs(start_y - end_y)
|
80 |
-
|
81 |
-
# Create the annotation object
|
82 |
-
annotation = Annotation(start_x, start_y, width, height, annotation_type)
|
83 |
-
|
84 |
-
# Add the annotation to the array
|
85 |
-
state['annotations'].append(annotation)
|
86 |
-
|
87 |
-
# Redraw the canvas
|
88 |
-
draw_canvas(canvas, state['image'], state['annotations'])
|
89 |
-
|
90 |
-
#
|
91 |
-
|
92 |
-
# Define the draw annotation function
|
93 |
-
def draw_annotation(canvas, start_x, start_y, end_x, end_y, annotation_type):
|
94 |
-
canvas.clear()
|
95 |
-
draw_canvas(canvas, state['image'], state['annotations'])
|
96 |
-
width = np.abs(start_x - end_x)
|
97 |
-
height = np.abs(start_y - end_y)
|
98 |
-
if annotation_type == 'rect':
|
99 |
-
canvas.draw_rect(start_x, start_y, width, height, stroke_color='red')
|
100 |
-
elif annotation_type == 'circle':
|
101 |
-
radius = np.sqrt(np.power(width, 2) + np.power(height, 2)) / 2
|
102 |
-
center_x, center_y = start_x + width / 2, start_y + height / 2
|
103 |
-
canvas.draw_circle(center_x, center_y, radius, stroke_color='red')
|
104 |
-
|
105 |
-
# Define the annotation type dropdown event handler
|
106 |
-
def annotation_type_changed(value):
|
107 |
-
state['annotation_type'] = value
|
108 |
-
|
109 |
-
# Define the download annotations button click event handler
|
110 |
-
def download_annotations_clicked():
|
111 |
-
# Define the csv headers
|
112 |
-
headers = ['x', 'y', 'width', 'height', 'type']
|
113 |
-
|
114 |
-
# Define the csv data
|
115 |
-
rows = [[str(annotation.x), str(annotation.y), str(annotation.width), str(annotation.height), annotation.type]
|
116 |
-
for annotation in state['annotations']]
|
117 |
-
|
118 |
-
# Create the csv string
|
119 |
-
csv_string = StringIO()
|
120 |
-
csv_writer = csv.writer(csv_string)
|
121 |
-
csv_writer.writerow(headers)
|
122 |
-
for row in rows:
|
123 |
-
csv_writer.writerow(row)
|
124 |
-
|
125 |
-
# Download the csv file
|
126 |
-
b64_csv = base64.b64encode(csv_string.getvalue().encode()).decode()
|
127 |
-
href = f'data:text/csv;base64,{b64_csv}'
|
128 |
-
download_link = f'<a href="{href}" download="annotations.csv">Download Annotations CSV</a>'
|
129 |
-
gr.Interface.show(download_link)
|
130 |
-
|
131 |
-
# Define the interface components
|
132 |
-
image = gr.inputs.Image(label='Image')
|
133 |
-
annotation_type = gr.inputs.Dropdown(ANNOTATION_TYPES, label='Annotation Type', default=ANNOTATION_TYPES[0], onchange=annotation_type_changed)
|
134 |
-
download_annotations = gr.outputs.Button(label='Download Annotations', type='button', onclick=download_annotations_clicked)
|
135 |
-
canvas = gr.outputs.Canvas(draw_event_handlers={
|
136 |
-
'mousedown': canvas_mousedown,
|
137 |
-
'mousemove': canvas_mousemove,
|
138 |
-
'mouseup': canvas_mouseup
|
139 |
-
})
|
140 |
-
|
141 |
-
# Define the interface function
|
142 |
-
def annotate_images(images):
|
143 |
-
state['image'] = images[0]
|
144 |
-
draw_canvas(canvas, state['image'], state['annotations'])
|
145 |
-
return canvas, annotation_type, download_annotations
|
146 |
-
|
147 |
-
# Create the interface
|
148 |
-
interface = gr.Interface(annotate_images, inputs=image, outputs=[canvas, annotation_type, download_annotations], capture_session=True)
|
149 |
-
|
150 |
-
return interface
|
151 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
import json
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
6 |
+
|
7 |
+
# Download and load pre-trained model and tokenizer
|
8 |
+
model_name = "distilbert-base-cased-distilled-squad"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
11 |
+
|
12 |
+
def answer_question(pdf_file, question):
|
13 |
+
# Convert PDF to text
|
14 |
+
pdf_data = pdf_file.read()
|
15 |
+
pdf_stream = io.BytesIO(pdf_data)
|
16 |
+
response = requests.post(
|
17 |
+
'https://pdftotext.com/ExtractText',
|
18 |
+
files={'pdffile': pdf_stream},
|
19 |
+
data={'form': 'pdftotext'}
|
20 |
+
)
|
21 |
+
text = response.text.strip()
|
22 |
+
|
23 |
+
# Tokenize question and text
|
24 |
+
input_ids = tokenizer.encode(question, text)
|
25 |
+
|
26 |
+
# Perform question answering
|
27 |
+
outputs = model(torch.tensor([input_ids]), return_dict=True)
|
28 |
+
answer_start = outputs.start_logits.argmax().item()
|
29 |
+
answer_end = outputs.end_logits.argmax().item()
|
30 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end+1]))
|
31 |
+
|
32 |
+
return answer
|
33 |
+
|
34 |
+
inputs = [
|
35 |
+
gr.inputs.File(label="PDF document"),
|
36 |
+
gr.inputs.Textbox(label="Question")
|
37 |
+
]
|
38 |
+
|
39 |
+
outputs = gr.outputs.Textbox(label="Answer")
|
40 |
+
|
41 |
+
gr.Interface(fn=answer_question, inputs=inputs, outputs=outputs, title="PDF Question Answering Tool",
|
42 |
+
description="Upload a PDF document and ask a question. The app will use a pre-trained model to find the answer.").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|