mutisya's picture
Update app.py
1278823 verified
raw
history blame
704 Bytes
import gradio as gr
from transformers import pipeline
import time
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base.en", device=device)
def transcribe(audio, state=""):
#print(audio)
time.sleep(2)
text = pipe(audio)["text"]
state += text + " "
return state, state
with gr.Blocks() as demo:
state = gr.State(value="")
with gr.Row():
with gr.Column():
audio = gr.Audio(sources="microphone", type="filepath")
with gr.Column():
textbox = gr.Textbox()
audio.stream(fn=transcribe, inputs=[audio, state], outputs=[textbox, state])
demo.launch(debug=True)