Spaces:
Runtime error
Runtime error
File size: 7,154 Bytes
f6086aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# -*- encoding: utf-8 -*-
'''
@File : chat.py
@Time : 2023/05/08 19:10:08
@Author : Ming Ding
@Contact : [email protected]
'''
import os
import sys
import re
from functools import partial
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
import requests
from PIL import Image
from io import BytesIO
import torch
from sat.generation.autoregressive_sampling import filling_sequence, BaseStrategy
from .blip2 import BlipImageEvalProcessor
def get_masks_and_position_ids_glm(seq, mask_position, context_length):
'''GLM model, different from GPT.
Args:
seq: torch.IntTensor, [seq_len]
mask_position: int, the position of the masked place.
context_length: int, the length of context.
Returns:
tokens: torch.IntTensor, [1, seq_len]
attention_mask: torch.FloatTensor, [1, seq_len, seq_len]
position_ids: torch.IntTensor, [2, seq_len]
'''
tokens = seq.unsqueeze(0)
attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
attention_mask.tril_()
attention_mask[..., :context_length] = 1
attention_mask.unsqueeze_(1)
# 2D position ids
position_ids = torch.zeros(2, len(seq), device=tokens.device, dtype=torch.long)
torch.arange(0, context_length, out=position_ids[0, :context_length])
position_ids[0, context_length:] = mask_position
torch.arange(1, len(seq) - context_length + 1, out=position_ids[1, context_length:])
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def process_response(response):
response = response.strip()
response = response.replace("[[训练时间]]", "2023年")
punkts = [
[",", ","],
["!", "!"],
[":", ":"],
[";", ";"],
["\?", "?"],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
return response
def process_image(text, image=None):
'''Process image in text.
Args:
text: str, text.
image: Optional, image path / url / PIL image.
'''
image_position = text.rfind("<img>") + 5
# extract path from <img></img> using re
image_path = re.findall(r"<img>(.*?)</img>", text)
image_path = image_path[-1] if image_path[-1] else None
if image_path is not None:
assert image is None, "image and image_path cannot be both not None."
text = text.replace(image_path, "")
image_path = image_path.strip()
# url
if image_path.startswith("http"):
response = requests.get(image_path, timeout=10)
image = Image.open(BytesIO(response.content))
# local path
else:
image = Image.open(image_path)
if image is not None and isinstance(image, Image.Image):
processor = BlipImageEvalProcessor(224)
image = processor(image.convert('RGB'))
image = image.unsqueeze(0)
return text, image_position, image
def chat(image_path, model, tokenizer,
query: str, history: List[Tuple[str, str]] = None, image: Image = None,
max_length: int = 1024, top_p=0.7, top_k=30, temperature=0.95, repetition_penalty=1.2,
invalid_slices=[], english=False
):
if not history:
history = []
if image_path:
prompt = "<img>{}</img>".format(image_path if image_path else "")
else:
prompt = "<img></img>"
if english:
for i, (old_query, response) in enumerate(history):
prompt += "Q:{}\nA:{}\n".format(old_query, response)
prompt += "Q:{}\nA:".format(query)
else:
for i, (old_query, response) in enumerate(history):
prompt += "问:{}\n答:{}\n".format(old_query, response)
prompt += "问:{}\n答:".format(query)
# ---------------
# tokenizer, this is an example of huggingface tokenizer.
# input str, output['input_ids'] = tensor([[tokenized str, gmask, sop]])
prompt, image_position, torch_image = process_image(prompt, image=image)
if torch_image is not None:
torch_image = torch_image.to(next(model.parameters()).dtype).to(next(model.parameters()).device)
if image_position < 5: # no image
inputs = tokenizer([prompt], return_tensors="pt").to(model.parameters().__next__().device)['input_ids'][0]
pre_image = 0
else:
input0 = tokenizer.encode(prompt[:image_position], add_special_tokens=False)
input1 = [tokenizer.pad_token_id] * model.image_length
input2 = tokenizer.encode(prompt[image_position:], add_special_tokens=False)
inputs = sum([input0, input1, input2], [])
inputs = torch.tensor(tokenizer.build_inputs_with_special_tokens(inputs)).to(model.parameters().__next__().device)
pre_image = len(input0)
# ---------------
# Next, we manually set the format to keep flexibility.
mask_position = len(inputs) - 2
context_length = len(inputs) - 1 # all before sop
get_func = partial(get_masks_and_position_ids_glm, mask_position=mask_position, context_length=context_length)
seq = torch.cat(
[inputs, torch.tensor([-1]*(max_length-len(inputs)), device=inputs.device)], dim=0
)
# ---------------
# from sat.generation.sampling_strategies import BeamSearchStrategy
# strategy = BeamSearchStrategy(num_beams, length_penalty=1., prefer_min_length=5, end_tokens=[tokenizer.eos_token_id], consider_end=True, no_repeat_ngram_size=5, stop_n_iter_unchanged=30, temperature=temperature, top_p=top_p, top_k=60, repetition_penalty=1.1)
strategy = BaseStrategy(temperature=temperature, top_p=top_p, top_k=top_k, end_tokens=[tokenizer.eos_token_id],
invalid_slices=invalid_slices, repetition_penalty=repetition_penalty)
output = filling_sequence(
model, seq,
batch_size=1,
get_masks_and_position_ids=get_func,
strategy=strategy,
pre_image=pre_image,
image=torch_image,
)[0] # drop memory
# ---------------
# port from inference_glm.py, more general than chat mode
# clip -1s and fill back generated things into seq
if type(output) is not list:
output_list = output.tolist()
else:
output_list = output
for i in range(len(output_list)):
output = output_list[i]
if type(output) is not list:
output = output.tolist()
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
if output[unfinished - 1] == tokenizer.eos_token_id:
unfinished -= 1
bog = output.index(tokenizer.bos_token_id)
output_list[i] = output[:mask_position] + output[bog + 1:unfinished] + output[mask_position + 1:bog]
# ---------------
response = tokenizer.decode(output_list[0])
sep = 'A:' if english else '答:'
response = process_response(response).split(sep)[-1].strip()
history = history + [(query, response)]
return response, history, torch_image
|