Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import os | |
# Imposta la directory di cache locale | |
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache" | |
# Titolo dell'app | |
st.title("π€ Chatbot DeepSeek con Transformers + Streamlit") | |
# Carica modello e tokenizer | |
def load_model(): | |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
# Inizializza la sessione | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# Input utente | |
user_input = st.text_input("Scrivi il tuo messaggio:") | |
# Generazione risposta | |
if user_input: | |
st.session_state.chat_history.append(("π§", user_input)) | |
inputs = tokenizer(user_input, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.session_state.chat_history.append(("π€", response)) | |
# Mostra la conversazione | |
for speaker, msg in st.session_state.chat_history: | |
st.markdown(f"**{speaker}**: {msg}") | |