Spaces:
Sleeping
Sleeping
delete files
Browse files- src/streamlit_app.py +30 -38
- streamlit_app.py +0 -32
src/streamlit_app.py
CHANGED
@@ -1,40 +1,32 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
|
32 |
-
|
33 |
-
st.
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Titolo dell'app
|
6 |
+
st.title("π€ Chatbot DeepSeek Transformers + Streamlit")
|
7 |
+
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
13 |
+
return tokenizer, model
|
14 |
+
|
15 |
+
tokenizer, model = load_model()
|
16 |
+
|
17 |
+
if "chat_history" not in st.session_state:
|
18 |
+
st.session_state.chat_history = []
|
19 |
+
|
20 |
+
user_input = st.text_input("Scrivi il tuo messaggio:")
|
21 |
+
|
22 |
+
if user_input:
|
23 |
+
st.session_state.chat_history.append(("π§", user_input))
|
24 |
+
|
25 |
+
inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
|
26 |
+
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
st.session_state.chat_history.append(("π€", response))
|
30 |
+
|
31 |
+
for speaker, msg in st.session_state.chat_history:
|
32 |
+
st.markdown(f"**{speaker}**: {msg}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
streamlit_app.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Titolo dell'app
|
6 |
-
st.title("π€ Chatbot DeepSeek Transformers + Streamlit")
|
7 |
-
|
8 |
-
@st.cache_resource
|
9 |
-
def load_model():
|
10 |
-
model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
13 |
-
return tokenizer, model
|
14 |
-
|
15 |
-
tokenizer, model = load_model()
|
16 |
-
|
17 |
-
if "chat_history" not in st.session_state:
|
18 |
-
st.session_state.chat_history = []
|
19 |
-
|
20 |
-
user_input = st.text_input("Scrivi il tuo messaggio:")
|
21 |
-
|
22 |
-
if user_input:
|
23 |
-
st.session_state.chat_history.append(("π§", user_input))
|
24 |
-
|
25 |
-
inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
|
26 |
-
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
27 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
-
|
29 |
-
st.session_state.chat_history.append(("π€", response))
|
30 |
-
|
31 |
-
for speaker, msg in st.session_state.chat_history:
|
32 |
-
st.markdown(f"**{speaker}**: {msg}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|