mwzero commited on
Commit
3c50af5
Β·
1 Parent(s): fc55931

delete files

Browse files
Files changed (2) hide show
  1. src/streamlit_app.py +30 -38
  2. streamlit_app.py +0 -32
src/streamlit_app.py CHANGED
@@ -1,40 +1,32 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Titolo dell'app
6
+ st.title("πŸ€– Chatbot DeepSeek Transformers + Streamlit")
7
+
8
+ @st.cache_resource
9
+ def load_model():
10
+ model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
13
+ return tokenizer, model
14
+
15
+ tokenizer, model = load_model()
16
+
17
+ if "chat_history" not in st.session_state:
18
+ st.session_state.chat_history = []
19
+
20
+ user_input = st.text_input("Scrivi il tuo messaggio:")
21
+
22
+ if user_input:
23
+ st.session_state.chat_history.append(("πŸ§‘", user_input))
24
+
25
+ inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
26
+ outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
27
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
28
+
29
+ st.session_state.chat_history.append(("πŸ€–", response))
30
+
31
+ for speaker, msg in st.session_state.chat_history:
32
+ st.markdown(f"**{speaker}**: {msg}")
 
 
 
 
 
 
 
streamlit_app.py DELETED
@@ -1,32 +0,0 @@
1
- import streamlit as st
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
-
5
- # Titolo dell'app
6
- st.title("πŸ€– Chatbot DeepSeek Transformers + Streamlit")
7
-
8
- @st.cache_resource
9
- def load_model():
10
- model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
11
- tokenizer = AutoTokenizer.from_pretrained(model_name)
12
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
13
- return tokenizer, model
14
-
15
- tokenizer, model = load_model()
16
-
17
- if "chat_history" not in st.session_state:
18
- st.session_state.chat_history = []
19
-
20
- user_input = st.text_input("Scrivi il tuo messaggio:")
21
-
22
- if user_input:
23
- st.session_state.chat_history.append(("πŸ§‘", user_input))
24
-
25
- inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
26
- outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
27
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
28
-
29
- st.session_state.chat_history.append(("πŸ€–", response))
30
-
31
- for speaker, msg in st.session_state.chat_history:
32
- st.markdown(f"**{speaker}**: {msg}")