Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Titolo dell'app
|
6 |
+
st.title("π€ Chatbot DeepSeek Transformers + Streamlit")
|
7 |
+
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
13 |
+
return tokenizer, model
|
14 |
+
|
15 |
+
tokenizer, model = load_model()
|
16 |
+
|
17 |
+
if "chat_history" not in st.session_state:
|
18 |
+
st.session_state.chat_history = []
|
19 |
+
|
20 |
+
user_input = st.text_input("Scrivi il tuo messaggio:")
|
21 |
+
|
22 |
+
if user_input:
|
23 |
+
st.session_state.chat_history.append(("π§", user_input))
|
24 |
+
|
25 |
+
inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
|
26 |
+
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
st.session_state.chat_history.append(("π€", response))
|
30 |
+
|
31 |
+
for speaker, msg in st.session_state.chat_history:
|
32 |
+
st.markdown(f"**{speaker}**: {msg}")
|