File size: 15,665 Bytes
e97905c
9cf0d3b
db33061
 
34226fa
b27d93f
1d3da36
18d089c
de67e48
 
82773a4
36aebd6
e97905c
4709de1
de67e48
82773a4
de67e48
bd1b497
18d089c
de67e48
 
 
 
18d089c
de67e48
bd1b497
a5a718a
 
 
4709de1
a5a718a
 
 
 
 
4709de1
 
 
 
 
 
e813605
de67e48
 
c9b656e
 
 
 
18d089c
c30da33
521a764
 
 
c30da33
521a764
 
 
 
4709de1
521a764
 
 
4709de1
521a764
 
 
 
 
 
 
4709de1
 
 
 
 
 
 
 
 
 
 
 
 
521a764
 
4709de1
 
 
 
521a764
 
 
 
 
 
 
4709de1
 
 
 
 
 
 
 
 
 
 
 
 
521a764
 
 
 
 
 
 
 
 
4709de1
 
521a764
 
4709de1
521a764
 
 
c30da33
521a764
 
c30da33
521a764
 
c30da33
 
 
 
 
 
 
 
 
 
 
 
a1ae61d
4efca8f
4709de1
4efca8f
 
 
 
82773a4
4709de1
 
 
4efca8f
4709de1
 
 
4efca8f
4709de1
4efca8f
c30da33
 
 
 
 
 
 
4709de1
 
c30da33
 
 
4709de1
 
c30da33
 
4709de1
c30da33
 
 
 
 
 
 
 
4efca8f
 
 
4709de1
 
4efca8f
 
c30da33
4efca8f
 
 
 
 
 
 
 
 
82773a4
c30da33
4efca8f
 
4709de1
4efca8f
c30da33
 
4709de1
 
 
 
 
c30da33
82773a4
c30da33
 
 
 
 
 
 
 
4709de1
4efca8f
4709de1
c30da33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4709de1
c30da33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f747
de67e48
 
 
e813605
 
 
 
 
 
 
a5a718a
 
25032a9
e813605
25032a9
a5a718a
 
c9b656e
a5a718a
 
 
 
 
 
 
 
 
 
 
 
 
 
e813605
a5a718a
 
 
 
 
 
 
de67e48
 
 
 
 
 
a5a718a
 
 
e813605
de67e48
c9b656e
db33061
 
8fedb8b
c9b656e
4efca8f
09f58ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82773a4
09f58ca
 
 
 
 
 
 
 
 
 
 
34226fa
25032a9
 
c9b656e
 
 
db33061
 
25032a9
 
 
 
 
 
 
db33061
 
 
c9b656e
 
db33061
 
 
 
 
 
 
 
 
 
 
36aebd6
18d089c
 
b6f5e93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, Union
from datetime import datetime

from aiohttp import ClientSession, ClientTimeout, ClientError, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import JSONResponse
from pydantic import BaseModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '')  # Comma-separated available models

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Process available models
if AVAILABLE_MODELS:
    AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
else:
    AVAILABLE_MODELS = []  # If empty, all models are available

# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

# Define cleanup interval and window
CLEANUP_INTERVAL = 60  # seconds
RATE_LIMIT_WINDOW = 60  # seconds

class Blackbox:
    label = "Blackbox AI"
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_gpt_4 = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        *image_models,
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
    ]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_aliases = {
        "gpt-3.5-turbo": "blackboxai",
        "gpt-4": "gpt-4o",
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @staticmethod
    def generate_random_string(length: int = 7) -> str:
        characters = string.ascii_letters + string.digits
        return ''.join(random.choices(characters, k=length))

    @staticmethod
    def clean_response(text: str) -> str:
        pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
        cleaned_text = re.sub(pattern, '', text)
        return cleaned_text

    @classmethod
    async def create_completion(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        **kwargs
    ) -> str:
        """
        Creates a completion using the Blackbox AI API.
        """
        model = cls.get_model(model)
        if model is None:
            logger.error(f"Model {model} is not available.")
            raise ModelNotWorkingException(model)

        chat_id = cls.generate_random_string()

        formatted_prompt = ""
        for message in messages:
            role = message.get('role', '').capitalize()
            content = message.get('content', '')
            if role and content:
                formatted_prompt += f"{role}: {content}\n"

        headers = {
            'Content-Type': 'application/json',
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9',
            'origin': cls.url,
            'referer': f"{cls.url}/?model={model}",
            'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36'
        }

        payload = {
            "messages": [
                {
                    "id": chat_id,
                    "content": formatted_prompt,
                    "role": "user"
                }
            ],
            "id": chat_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": cls.agentMode.get(model, {}),
            "trendingAgentMode": cls.trendingAgentMode.get(model, {}),
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 1024,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "webSearchMode": False,
            "userSelectedModel": cls.userSelectedModel.get(model, model)
        }

        async with ClientSession() as session:
            try:
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    json=payload
                ) as response:
                    response.raise_for_status()
                    text = await response.text()
                    cleaned_response = cls.clean_response(text)
                    return cleaned_response
            except ClientResponseError as e:
                error_text = f"Error {e.status}: {e.message}"
                try:
                    error_response = await e.response.text()
                    cleaned_error = cls.clean_response(error_response)
                    error_text += f" - {cleaned_error}"
                except Exception:
                    pass
                raise HTTPException(status_code=e.status, detail=error_text)
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

async def cleanup_rate_limit_stores():
    """
    Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
    """
    while True:
        current_time = time.time()
        ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
        for ip in ips_to_delete:
            del rate_limit_store[ip]
            logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
        await asyncio.sleep(CLEANUP_INTERVAL)

async def rate_limiter_per_ip(request: Request):
    """
    Rate limiter that enforces a limit based on the client's IP address.
    """
    client_ip = request.client.host
    current_time = time.time()

    # Initialize or update the count and timestamp
    if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
        rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded')
        rate_limit_store[client_ip]["count"] += 1

async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
    """
    Dependency to extract and validate the API key from the Authorization header.
    """
    client_ip = request.client.host
    if authorization is None or not authorization.startswith('Bearer '):
        logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

# FastAPI app setup
app = FastAPI()

# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_rate_limit_stores())
    logger.info("Started rate limit store cleanup task.")

# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    response = await call_next(request)
    return response

# Request Models
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None

@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

try:
    # Validate that the requested model is available
    if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
        logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
        raise HTTPException(status_code=400, detail="Requested model is not available.")

    # Process the request with actual message content, but don't log it
    response_content = await Blackbox.create_completion(
        model=request.model,
        messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],  # Actual message content used here
    )

    logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": request.model,
        "choices": [
            {
                "message": {
                    "role": "assistant",
                    "content": response_content
                },
                "finish_reason": "stop",
                "index": 0
            }
        ],
        "usage": {
            "prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
            "completion_tokens": len(response_content.split()),
            "total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
        }
    }  # Closing the dictionary here
except ModelNotWorkingException as e:
    logger.warning(f"Model not working: {e} | IP: {client_ip}")
    raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
    logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
    raise he
except Exception as e:
    logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
    raise HTTPException(status_code=500, detail=str(e))


# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
    client_ip = req.client.host
    logger.info(f"Fetching available models from IP: {client_ip}")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
    client_ip = req.client.host
    logger.info(f"Health check requested from IP: {client_ip}")
    return {"status": "ok"}

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    client_ip = request.client.host
    logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)