File size: 10,095 Bytes
2722c48 9cf0d3b 2722c48 686c0d3 2722c48 7937c8d 2722c48 de1ffc5 628f747 2ac9e01 7937c8d 628f747 7937c8d 142d11a 7937c8d 628f747 7937c8d 628f747 8a3edf7 2722c48 7937c8d 80dc124 132ad0c 80dc124 132ad0c 8a3edf7 2722c48 8a3edf7 2722c48 8a3edf7 80dc124 7937c8d 8a3edf7 628f747 7937c8d 8a3edf7 80dc124 2ac9e01 132ad0c 2ac9e01 80dc124 8a3edf7 142d11a 8a3edf7 142d11a 80dc124 8a3edf7 142d11a 2722c48 142d11a 7937c8d 142d11a 8a3edf7 7937c8d 80dc124 8a3edf7 142d11a d70e4eb 8a3edf7 142d11a 80dc124 7937c8d 80dc124 8a3edf7 0d812a5 5b4d662 2722c48 8a3edf7 5b4d662 8a3edf7 5b4d662 628f747 2722c48 7937c8d 2722c48 80a3863 187715b 2722c48 a94e1e0 2722c48 45670a8 2ac9e01 132ad0c ca3090c 2ac9e01 45670a8 2722c48 1cfe11e c93f285 1cfe11e b427211 2722c48 45670a8 2722c48 4780761 c93f285 4780761 5b4d662 ca3090c b427211 1bfa801 45670a8 2722c48 45670a8 2722c48 45670a8 7b0a416 ca3090c 7b0a416 2ac9e01 5b4d662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from __future__ import annotations
import re
import random
import string
import uuid
import json
from aiohttp import ClientSession
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from datetime import datetime
from fastapi.responses import StreamingResponse
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please wait for NiansuhAI to fix this. Thank you for your patience."
super().__init__(self.message)
# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, url: str, alt: str):
self.url = url
self.alt = alt
def to_data_uri(image: Any) -> str:
return "data:image/png;base64,..." # Replace with actual base64 data
class AsyncGeneratorProvider:
pass
class ProviderModelMixin:
pass
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackbox'
models = [
'blackbox',
'gemini-1.5-flash',
"llama-3.1-8b",
'llama-3.1-70b', # Example of a non-working model
'llama-3.1-405b',
'ImageGenerationLV45LJp',
'gpt-4o',
'gemini-pro',
'claude-sonnet-3.5',
]
# Define the working status of models
model_status = {
'blackbox': True,
'gemini-1.5-flash': True,
'llama-3.1-8b': True,
'llama-3.1-70b': False, # Non-working model
'llama-3.1-405b': True,
'ImageGenerationLV45LJp': True,
'gpt-4o': True,
'gemini-pro': True,
'claude-sonnet-3.5': True,
}
agentMode = {
'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackbox": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"flux": "ImageGenerationLV45LJp",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
image: Optional[Any] = None,
image_name: Optional[str] = None,
**kwargs
) -> Any:
model = cls.get_model(model)
# Check if the model is working
if not cls.model_status.get(model, False):
raise ModelNotWorkingException(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"referer": f"{cls.url}/",
"sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
}
if model in cls.userSelectedModel:
prefix = f"@{cls.userSelectedModel[model]}"
if not messages[0]['content'].startswith(prefix):
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
async with ClientSession(headers=headers) as session:
if image is not None:
messages[-1]["data"] = {
"fileText": image_name,
"imageBase64": to_data_uri(image)
}
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"userSelectedModel": None,
"userSystemPrompt": None,
"isMicMode": False,
"maxTokens": 4096,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": False,
}
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
if model == 'ImageGenerationLV45LJp':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
yield ImageResponse(image_url, alt=messages[-1]['content'])
else:
raise Exception("Image URL not found in the response")
else:
response_content = ""
async for chunk in response.content.iter_any():
if chunk:
decoded_chunk = chunk.decode(errors='ignore')
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
response_content += decoded_chunk
# Check if the response content is empty
if not response_content.strip():
raise ModelNotWorkingException(model)
yield response_content
# FastAPI app setup
app = FastAPI()
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
stream: Optional[bool] = False # Add this for streaming
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
@app.post("/niansuhai/v1/chat/completions")
async def chat_completions(request: ChatRequest):
# Validate the model
valid_models = Blackbox.models + list(Blackbox.userSelectedModel.keys()) + list(Blackbox.model_aliases.keys())
if request.model not in valid_models:
raise HTTPException(status_code=400, detail=f"Invalid model name: {request.model}. Valid models are: {valid_models}")
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
try:
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=messages,
image=None, # Pass the image if required
image_name=None # Pass image name if required
)
except ModelNotWorkingException as e:
raise HTTPException(status_code=503, detail=str(e))
if request.stream:
async def generate():
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
image_markdown = f""
yield f"data: {json.dumps(create_response(image_markdown, request.model))}\n\n"
else:
yield f"data: {json.dumps(create_response(chunk + '\nNiansuhAI', request.model))}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"\n"
else:
response_content += chunk
# Append "\nNiansuhAI" to the final response content
response_content += "\n**NiansuhAI**"
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": None,
}
@app.get("/niansuhai/v1/models")
async def get_models():
return {"models": Blackbox.models}
|