File size: 6,884 Bytes
ba592f1
 
 
 
 
 
 
 
6b34973
 
 
 
ba592f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b34973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba592f1
 
 
 
 
 
 
 
6b34973
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# api/providers.py

from __future__ import annotations

import json
import uuid
from aiohttp import ClientSession, ClientTimeout, ClientResponseError
from typing import AsyncGenerator, List, Dict, Any

from api.logger import setup_logger

logger = setup_logger(__name__)

class AmigoChat:
    url = "https://amigochat.io"
    chat_api_endpoint = "https://api.amigochat.io/v1/chat/completions"
    image_api_endpoint = "https://api.amigochat.io/v1/images/generations"
    default_model = 'gpt-4o-mini'

    chat_models = [
        'gpt-4o',
        default_model,
        'o1-preview',
        'o1-mini',
        'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
        'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
        'claude-3-sonnet-20240229',
        'gemini-1.5-pro',
    ]

    image_models = [
        'flux-pro/v1.1',
        'flux-realism',
        'flux-pro',
        'dalle-e-3',
    ]

    models = chat_models + image_models

    model_aliases = {
        "o1": "o1-preview",
        "llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
        "llama-3.2-90b": "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
        "claude-3.5-sonnet": "claude-3-sonnet-20240229",
        "gemini-pro": "gemini-1.5-pro",
        "flux-pro": "flux-pro/v1.1",
        "dalle-3": "dalle-e-3",
    }

    persona_ids = {
        'gpt-4o': "gpt",
        'gpt-4o-mini': "amigo",
        'o1-preview': "openai-o-one",
        'o1-mini': "openai-o-one-mini",
        'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo': "llama-three-point-one",
        'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo': "llama-3-2",
        'claude-3-sonnet-20240229': "claude",
        'gemini-1.5-pro': "gemini-1-5-pro",
        'flux-pro/v1.1': "flux-1-1-pro",
        'flux-realism': "flux-realism",
        'flux-pro': "flux-pro",
        'dalle-e-3': "dalle-three",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        return cls.model_aliases.get(model, model if model in cls.models else cls.default_model)

    @classmethod
    def get_persona_id(cls, model: str) -> str:
        return cls.persona_ids.get(model, "amigo")

    @classmethod
    async def generate_response(
        cls,
        model: str,
        messages: List[Dict[str, Any]],
        stream: bool = False,
        proxy: str = None,
    ) -> AsyncGenerator[str, None]:
        model = cls.get_model(model)
        device_uuid = str(uuid.uuid4())

        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "authorization": "Bearer",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": f"{cls.url}/",
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
            "x-device-language": "en-US",
            "x-device-platform": "web",
            "x-device-uuid": device_uuid,
            "x-device-version": "1.0.32"
        }

        async with ClientSession(headers=headers) as session:
            if model in cls.chat_models:
                # Chat completion
                data = {
                    "messages": messages,
                    "model": model,
                    "personaId": cls.get_persona_id(model),
                    "frequency_penalty": 0,
                    "max_tokens": 4000,
                    "presence_penalty": 0,
                    "stream": stream,
                    "temperature": 0.5,
                    "top_p": 0.95
                }

                timeout = ClientTimeout(total=300)
                try:
                    async with session.post(cls.chat_api_endpoint, json=data, proxy=proxy, timeout=timeout) as response:
                        if response.status not in (200, 201):
                            error_text = await response.text()
                            raise Exception(f"Error {response.status}: {error_text}")

                        if stream:
                            async for line in response.content:
                                line = line.decode('utf-8').strip()
                                if line.startswith('data: '):
                                    if line == 'data: [DONE]':
                                        break
                                    try:
                                        chunk = json.loads(line[6:])
                                        if 'choices' in chunk and len(chunk['choices']) > 0:
                                            choice = chunk['choices'][0]
                                            if 'delta' in choice:
                                                content = choice['delta'].get('content')
                                            elif 'text' in choice:
                                                content = choice['text']
                                            else:
                                                content = None
                                            if content:
                                                yield content
                                    except json.JSONDecodeError:
                                        pass
                        else:
                            response_data = await response.json()
                            if 'choices' in response_data and len(response_data['choices']) > 0:
                                content = response_data['choices'][0]['message']['content']
                                yield content
                except Exception as e:
                    logger.error(f"Error during request: {e}")
                    raise

            else:
                # Image generation
                prompt = messages[-1]['content']
                data = {
                    "prompt": prompt,
                    "model": model,
                    "personaId": cls.get_persona_id(model)
                }
                try:
                    async with session.post(cls.image_api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        response_data = await response.json()
                        if "data" in response_data:
                            image_urls = [item["url"] for item in response_data["data"] if "url" in item]
                            if image_urls:
                                yield json.dumps({"images": image_urls, "prompt": prompt})
                except Exception as e:
                    logger.error(f"Error during image generation: {e}")
                    raise