File size: 10,520 Bytes
b0275d3
 
1f7ef29
 
5cecd79
 
 
e06c1a9
c9b2576
bda3109
1f7ef29
5cecd79
1f7ef29
b0275d3
 
 
 
e1b2c3b
5cecd79
b0275d3
 
1f7ef29
c9b2576
a2a629e
 
 
1f7ef29
a2a629e
e06c1a9
 
 
5cecd79
b0275d3
1f7ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0275d3
 
 
 
 
d1a8ada
 
f7ad6cb
 
 
 
 
 
 
 
 
d1a8ada
f7ad6cb
b0275d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
a2a629e
b0275d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
a2a629e
b0275d3
 
c9b2576
b0275d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
b0275d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7ef29
b0275d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# api/utils.py

from datetime import datetime
import json
import uuid
import asyncio
import random
import string
from typing import Any, Dict, Optional, AsyncGenerator

import httpx
from fastapi import HTTPException
from api.config import (
    MODELS,
    MODEL_ALIASES,
    DEFAULT_MODEL,
    API_ENDPOINT,
    get_headers_api_chat,
    BASE_URL,
    MODEL_PREFIXES,
    MODEL_REFERERS
)
from api.models import ChatRequest, Message
from api.logger import setup_logger

logger = setup_logger(__name__)

# Helper function to create a random alphanumeric chat ID
def generate_chat_id(length: int = 7) -> str:
    characters = string.ascii_letters + string.digits
    return ''.join(random.choices(characters, k=length))

# Helper function to create a chat completion data chunk
def create_chat_completion_data(
    content: str, model: str, timestamp: int, finish_reason: Optional[str] = None
) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": timestamp,
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

# Function to convert message to dictionary format, ensuring base64 data and optional model prefix
def message_to_dict(message: Message, model_prefix: Optional[str] = None):
    content = message.content if isinstance(message.content, str) else message.content[0]["text"]
    if model_prefix:
        content = f"{model_prefix} {content}"
    if isinstance(message.content, list) and len(message.content) == 2 and "image_url" in message.content[1]:
        # Ensure base64 images are always included for all models
        return {
            "role": message.role,
            "content": content,
            "data": {
                "imageBase64": message.content[1]["image_url"]["url"],
                "fileText": "",
                "title": "snapshot",
            },
        }
    return {"role": message.role, "content": content}

# Function to strip model prefix from content if present
def strip_model_prefix(content: str, model_prefix: Optional[str] = None) -> str:
    """Remove the model prefix from the response content if present."""
    if model_prefix and content.startswith(model_prefix):
        logger.debug(f"Stripping prefix '{model_prefix}' from content.")
        return content[len(model_prefix):].strip()
    return content

# Function to get the correct referer URL for logging
def get_referer_url(chat_id: str, model: str) -> str:
    """Generate the referer URL based on specific models listed in MODEL_REFERERS."""
    if model in MODEL_REFERERS:
        return f"{BASE_URL}/chat/{chat_id}?model={model}"
    return BASE_URL

# Helper function to format messages
def format_messages(messages: list[Message]) -> str:
    # Assuming messages need to be concatenated in some way
    return "\n".join([msg.content if isinstance(msg.content, str) else msg.content[0]["text"] for msg in messages])

# Process streaming response
async def process_streaming_response(request: ChatRequest) -> AsyncGenerator[str, None]:
    chat_id = generate_chat_id()
    referer_url = get_referer_url(chat_id, request.model)
    logger.info(f"Generated Chat ID: {chat_id} - Model: {request.model} - URL: {referer_url}")

    model = request.model if request.model in MODELS else MODEL_ALIASES.get(request.model, DEFAULT_MODEL)
    model_prefix = MODEL_PREFIXES.get(model, "")

    headers_api_chat = get_headers_api_chat(referer_url)

    # Prepare data based on model type
    if model in ['flux1', 'sdxl', 'sd', 'sd35']:  # Image models
        prompt = request.messages[-1].content if isinstance(request.messages[-1].content, str) else request.messages[-1].content[0]["text"]
        data = {
            "model": model,
            "input": {
                "width": "1024",
                "height": "1024",
                "steps": 4,
                "output_format": "webp",
                "batch_size": 1,
                "mode": "plan",
                "prompt": prompt
            }
        }
    else:  # Chat models
        data = {
            "model": model,
            "input": {
                "messages": [
                    {
                        "type": "human",
                        "content": f"{model_prefix} {format_messages(request.messages)}" if model_prefix else format_messages(request.messages)
                    }
                ],
                "mode": "plan"
            },
            "noStream": False  # Assuming streaming
        }

    async with httpx.AsyncClient() as client:
        try:
            async with client.post(
                API_ENDPOINT,
                headers=headers_api_chat,
                json=data,
                timeout=100
            ) as response:
                response.raise_for_status()
                # Assuming the API returns a streaming response
                async for line in response.aiter_lines():
                    timestamp = int(datetime.now().timestamp())
                    if line:
                        content = line
                        # Depending on GizAI's response format, adjust parsing
                        # Placeholder for content processing
                        # Assuming content contains the message
                        cleaned_content = strip_model_prefix(content, model_prefix)
                        yield f"data: {json.dumps(create_chat_completion_data(cleaned_content, model, timestamp))}\n\n"

                # Indicate end of stream
                yield f"data: {json.dumps(create_chat_completion_data('', model, int(datetime.now().timestamp()), 'stop'))}\n\n"
                yield "data: [DONE]\n\n"
        except httpx.HTTPStatusError as e:
            logger.error(f"HTTP error occurred for Chat ID {chat_id}: {e}")
            raise HTTPException(status_code=e.response.status_code, detail=str(e))
        except httpx.RequestError as e:
            logger.error(f"Error occurred during request for Chat ID {chat_id}: {e}")
            raise HTTPException(status_code=500, detail=str(e))

# Process non-streaming response
async def process_non_streaming_response(request: ChatRequest) -> Dict[str, Any]:
    chat_id = generate_chat_id()
    referer_url = get_referer_url(chat_id, request.model)
    logger.info(f"Generated Chat ID: {chat_id} - Model: {request.model} - URL: {referer_url}")

    model = request.model if request.model in MODELS else MODEL_ALIASES.get(request.model, DEFAULT_MODEL)
    model_prefix = MODEL_PREFIXES.get(model, "")

    headers_api_chat = get_headers_api_chat(referer_url)

    # Prepare data based on model type
    if model in ['flux1', 'sdxl', 'sd', 'sd35']:  # Image models
        prompt = request.messages[-1].content if isinstance(request.messages[-1].content, str) else request.messages[-1].content[0]["text"]
        data = {
            "model": model,
            "input": {
                "width": "1024",
                "height": "1024",
                "steps": 4,
                "output_format": "webp",
                "batch_size": 1,
                "mode": "plan",
                "prompt": prompt
            }
        }
    else:  # Chat models
        data = {
            "model": model,
            "input": {
                "messages": [
                    {
                        "type": "human",
                        "content": f"{model_prefix} {format_messages(request.messages)}" if model_prefix else format_messages(request.messages)
                    }
                ],
                "mode": "plan"
            },
            "noStream": True  # Non-streaming
        }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                API_ENDPOINT,
                headers=headers_api_chat,
                json=data,
                timeout=100
            )
            response.raise_for_status()
            response_data = response.json()

            # Process response based on GizAI's API response structure
            # Placeholder: assuming 'output' contains the generated content
            if model in ['flux1', 'sdxl', 'sd', 'sd35']:  # Image models
                if response_data.get('status') == 'completed' and response_data.get('output'):
                    images = response_data['output']
                    # Assuming images is a list of URLs
                    # For non-streaming, return all images at once
                    # Adjust according to actual response
                    return {
                        "id": f"chatcmpl-{uuid.uuid4()}",
                        "object": "chat.completion",
                        "created": int(datetime.now().timestamp()),
                        "model": model,
                        "choices": [
                            {
                                "index": 0,
                                "message": {"role": "assistant", "content": "", "images": images},
                                "finish_reason": "stop",
                            }
                        ],
                        "usage": None,
                    }
            else:  # Chat models
                # Assuming response_data contains the full response
                content = response_data.get('output', '')
                cleaned_content = strip_model_prefix(content, model_prefix)
                return {
                    "id": f"chatcmpl-{uuid.uuid4()}",
                    "object": "chat.completion",
                    "created": int(datetime.now().timestamp()),
                    "model": model,
                    "choices": [
                        {
                            "index": 0,
                            "message": {"role": "assistant", "content": cleaned_content},
                            "finish_reason": "stop",
                        }
                    ],
                    "usage": None,
                }
        except httpx.HTTPStatusError as e:
            logger.error(f"HTTP error occurred for Chat ID {chat_id}: {e}")
            raise HTTPException(status_code=e.response.status_code, detail=str(e))
        except httpx.RequestError as e:
            logger.error(f"Error occurred during request for Chat ID {chat_id}: {e}")
            raise HTTPException(status_code=500, detail=str(e))