File size: 25,986 Bytes
a5d5b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
from datetime import datetime

from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from pydantic import BaseModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '')  # Comma-separated available models

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Process available models
if AVAILABLE_MODELS:
    AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
else:
    AVAILABLE_MODELS = []  # If empty, all models are available

# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

# Define cleanup interval and window
CLEANUP_INTERVAL = 60  # seconds
RATE_LIMIT_WINDOW = 60  # seconds

async def cleanup_rate_limit_stores():
    """
    Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
    """
    while True:
        current_time = time.time()
        ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
        for ip in ips_to_delete:
            del rate_limit_store[ip]
            logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
        await asyncio.sleep(CLEANUP_INTERVAL)

async def rate_limiter_per_ip(request: Request):
    """
    Rate limiter that enforces a limit based on the client's IP address.
    """
    client_ip = request.client.host
    current_time = time.time()

    # Initialize or update the count and timestamp
    if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
        rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
        rate_limit_store[client_ip]["count"] += 1

async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
    """
    Dependency to extract and validate the API key from the Authorization header.
    """
    client_ip = request.client.host
    if authorization is None or not authorization.startswith('Bearer '):
        logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    # Filter models based on AVAILABLE_MODELS
    if AVAILABLE_MODELS:
        models = [model for model in models if model in AVAILABLE_MODELS]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> Optional[str]:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel and cls.userSelectedModel[model] in cls.models:
            return model
        elif model in cls.model_aliases and cls.model_aliases[model] in cls.models:
            return cls.model_aliases[model]
        else:
            return cls.default_model if cls.default_model in cls.models else None

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        if model is None:
            logger.error(f"Model {model} is not available.")
            raise ModelNotWorkingException(model)

        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'

        # Don't log the full message content for privacy
        logger.debug(f"Generated message ID: {random_id} for model: {model}")

        if image is not None:
            messages[-1]['data'] = {
                'fileText': '',
                'imageBase64': to_data_uri(image),
                'title': image_name
            }
            messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
            logger.debug("Image data added to the message.")
        
        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
            "validated": "00f37b34-a166-4efb-bce5-1312d87f2f94"
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found.")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API.")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out.")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# FastAPI app setup
app = FastAPI()

# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_rate_limit_stores())
    logger.info("Started rate limit store cleanup task.")

# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    response = await call_next(request)
    return response

# Request Models
class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    webSearchMode: Optional[bool] = False  # Custom parameter

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
            raise HTTPException(status_code=400, detail="Requested model is not available.")

        # Process the request with actual message content, but don't log it
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],  # Actual message content used here
            image=None,
            image_name=None,
            webSearchMode=request.webSearchMode
        )

        if request.stream:
            async def generate():
                try:
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            image_markdown = f"![image]({chunk.url})"
                            response_chunk = create_response(image_markdown, request.model)
                        else:
                            response_chunk = create_response(chunk, request.model)
                        
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                else:
                    response_content += chunk

            logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")
            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
                    "completion_tokens": len(response_content.split()),
                    "total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
                },
            }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e} | IP: {client_ip}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
        raise he
    except Exception as e:
        logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
        raise HTTPException(status_code=500, detail=str(e))

# Re-added endpoints without API key authentication

# Endpoint: POST /v1/tokenizer
class TokenizerRequest(BaseModel):
    text: str

@app.post("/v1/tokenizer", dependencies=[Depends(rate_limiter_per_ip)])
async def tokenizer(request: TokenizerRequest, req: Request):
    client_ip = req.client.host
    text = request.text
    token_count = len(text.split())
    logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
    return {"text": text, "tokens": token_count}

# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
    client_ip = req.client.host
    logger.info(f"Fetching available models from IP: {client_ip}")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Endpoint: GET /v1/models/{model}/status
@app.get("/v1/models/{model}/status", dependencies=[Depends(rate_limiter_per_ip)])
async def model_status(model: str, req: Request):
    client_ip = req.client.host
    logger.info(f"Model status requested for '{model}' from IP: {client_ip}")
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        logger.warning(f"Model not found: {model} from IP: {client_ip}")
        raise HTTPException(status_code=404, detail="Model not found")

# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
    client_ip = req.client.host
    logger.info(f"Health check requested from IP: {client_ip}")
    return {"status": "ok"}

# Endpoint: GET /v1/chat/completions (GET method)
@app.get("/v1/chat/completions")
async def chat_completions_get(req: Request):
    client_ip = req.client.host
    logger.info(f"GET request made to /v1/chat/completions from IP: {client_ip}, redirecting to 'about:blank'")
    return RedirectResponse(url='about:blank')

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    client_ip = request.client.host
    logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)