File size: 5,649 Bytes
1f7ef29
 
5cecd79
 
 
e06c1a9
c9b2576
bda3109
1f7ef29
5cecd79
1f7ef29
c9b2576
 
 
1f7ef29
e1b2c3b
5cecd79
1f7ef29
c9b2576
a2a629e
da8ba32
a2a629e
 
1f7ef29
a2a629e
e06c1a9
 
 
5cecd79
f7ad6cb
1f7ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
 
 
 
 
 
 
 
 
d1a8ada
 
f7ad6cb
 
 
 
 
 
 
 
 
d1a8ada
f7ad6cb
c9b2576
 
 
 
 
 
 
da8ba32
 
b88e75c
da8ba32
c9b2576
a2a629e
c9b2576
 
 
da8ba32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
a2a629e
c9b2576
 
 
da8ba32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b2576
da8ba32
 
 
 
 
 
 
 
 
 
c9b2576
da8ba32
 
 
1f7ef29
c9b2576
 
da8ba32
c9b2576
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from datetime import datetime
import json
import uuid
import asyncio
import random
import string
from typing import Any, Dict, Optional, AsyncGenerator

import httpx
from fastapi import HTTPException
from api.config import (
    models,
    model_aliases,
    ALLOWED_MODELS,
    MODEL_MAPPING,
    get_headers_api_chat,
    BASE_URL,
)
from api.models import ChatRequest, Message
from api.logger import setup_logger
from api.providers.gizai import GizAI  # Import the GizAI provider

logger = setup_logger(__name__)

# Helper function to create a random alphanumeric chat ID
def generate_chat_id(length: int = 7) -> str:
    characters = string.ascii_letters + string.digits
    return ''.join(random.choices(characters, k=length))

# Helper function to create chat completion data
def create_chat_completion_data(
    content: str, model: str, timestamp: int, finish_reason: Optional[str] = None
) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": timestamp,
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

# Function to convert message to dictionary format, ensuring base64 data
def message_to_dict(message: Message):
    if isinstance(message.content, str):
        content = message.content
    elif isinstance(message.content, list) and isinstance(message.content[0], dict) and "text" in message.content[0]:
        content = message.content[0]["text"]
    else:
        content = ""

    if isinstance(message.content, list) and len(message.content) == 2 and "image_url" in message.content[1]:
        # Ensure base64 images are always included for all models
        return {
            "role": message.role,
            "content": content,
            "data": {
                "imageBase64": message.content[1]["image_url"]["url"],
                "fileText": "",
                "title": "snapshot",
            },
        }
    return {"role": message.role, "content": content}

# Function to resolve model aliases
def resolve_model(model: str) -> str:
    if model in MODEL_MAPPING:
        return model
    elif model in model_aliases:
        return model_aliases[model]
    else:
        logger.warning(f"Model '{model}' not recognized. Using default model '{GizAI.default_model}'.")
        return GizAI.default_model  # default_model

# Process streaming response with GizAI provider
async def process_streaming_response(request: ChatRequest) -> AsyncGenerator[str, None]:
    chat_id = generate_chat_id()
    resolved_model = resolve_model(request.model)
    logger.info(f"Generated Chat ID: {chat_id} - Model: {resolved_model}")

    # Instantiate the GizAI provider
    gizai_provider = GizAI()

    # Create the async generator
    async for response in gizai_provider.create_async_generator(
        model=resolved_model,
        messages=request.messages,
        proxy=request.proxy  # Assuming 'proxy' is part of ChatRequest; if not, adjust accordingly
    ):
        timestamp = int(datetime.now().timestamp())
        if isinstance(response, ImageResponse):
            # Handle image responses
            yield f"data: {json.dumps({'image_url': response.images, 'alt': response.alt})}\n\n"
        else:
            # Handle text responses
            yield f"data: {json.dumps(create_chat_completion_data(response, resolved_model, timestamp))}\n\n"

    # Indicate completion
    timestamp = int(datetime.now().timestamp())
    yield f"data: {json.dumps(create_chat_completion_data('', resolved_model, timestamp, 'stop'))}\n\n"
    yield "data: [DONE]\n\n"

# Process non-streaming response with GizAI provider
async def process_non_streaming_response(request: ChatRequest) -> Dict[str, Any]:
    chat_id = generate_chat_id()
    resolved_model = resolve_model(request.model)
    logger.info(f"Generated Chat ID: {chat_id} - Model: {resolved_model}")

    # Instantiate the GizAI provider
    gizai_provider = GizAI()

    # Collect the responses
    responses = []
    async for response in gizai_provider.create_async_generator(
        model=resolved_model,
        messages=request.messages,
        proxy=request.proxy  # Assuming 'proxy' is part of ChatRequest; if not, adjust accordingly
    ):
        if isinstance(response, ImageResponse):
            # For image responses, collect image URLs
            responses.append({"image_url": response.images, "alt": response.alt})
        else:
            # For text responses, append the text
            responses.append(response)

    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": resolved_model,
        "choices": [
            {
                "index": 0,
                "message": {"role": "assistant", "content": responses},
                "finish_reason": "stop",
            }
        ],
        "usage": None,
    }

# Helper function to format prompt from messages
def format_prompt(messages: list[Message]) -> str:
    # Implement the prompt formatting as per GizAI's requirements
    # Placeholder implementation
    formatted_messages = []
    for msg in messages:
        if isinstance(msg.content, str):
            formatted_messages.append(msg.content)
        elif isinstance(msg.content, list):
            text = msg.content[0].get("text", "")
            formatted_messages.append(text)
    return "\n".join(formatted_messages)