File size: 5,649 Bytes
1f7ef29 5cecd79 e06c1a9 c9b2576 bda3109 1f7ef29 5cecd79 1f7ef29 c9b2576 1f7ef29 e1b2c3b 5cecd79 1f7ef29 c9b2576 a2a629e da8ba32 a2a629e 1f7ef29 a2a629e e06c1a9 5cecd79 f7ad6cb 1f7ef29 c9b2576 d1a8ada f7ad6cb d1a8ada f7ad6cb c9b2576 da8ba32 b88e75c da8ba32 c9b2576 a2a629e c9b2576 da8ba32 c9b2576 a2a629e c9b2576 da8ba32 c9b2576 da8ba32 c9b2576 da8ba32 1f7ef29 c9b2576 da8ba32 c9b2576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
from datetime import datetime
import json
import uuid
import asyncio
import random
import string
from typing import Any, Dict, Optional, AsyncGenerator
import httpx
from fastapi import HTTPException
from api.config import (
models,
model_aliases,
ALLOWED_MODELS,
MODEL_MAPPING,
get_headers_api_chat,
BASE_URL,
)
from api.models import ChatRequest, Message
from api.logger import setup_logger
from api.providers.gizai import GizAI # Import the GizAI provider
logger = setup_logger(__name__)
# Helper function to create a random alphanumeric chat ID
def generate_chat_id(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
# Helper function to create chat completion data
def create_chat_completion_data(
content: str, model: str, timestamp: int, finish_reason: Optional[str] = None
) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
# Function to convert message to dictionary format, ensuring base64 data
def message_to_dict(message: Message):
if isinstance(message.content, str):
content = message.content
elif isinstance(message.content, list) and isinstance(message.content[0], dict) and "text" in message.content[0]:
content = message.content[0]["text"]
else:
content = ""
if isinstance(message.content, list) and len(message.content) == 2 and "image_url" in message.content[1]:
# Ensure base64 images are always included for all models
return {
"role": message.role,
"content": content,
"data": {
"imageBase64": message.content[1]["image_url"]["url"],
"fileText": "",
"title": "snapshot",
},
}
return {"role": message.role, "content": content}
# Function to resolve model aliases
def resolve_model(model: str) -> str:
if model in MODEL_MAPPING:
return model
elif model in model_aliases:
return model_aliases[model]
else:
logger.warning(f"Model '{model}' not recognized. Using default model '{GizAI.default_model}'.")
return GizAI.default_model # default_model
# Process streaming response with GizAI provider
async def process_streaming_response(request: ChatRequest) -> AsyncGenerator[str, None]:
chat_id = generate_chat_id()
resolved_model = resolve_model(request.model)
logger.info(f"Generated Chat ID: {chat_id} - Model: {resolved_model}")
# Instantiate the GizAI provider
gizai_provider = GizAI()
# Create the async generator
async for response in gizai_provider.create_async_generator(
model=resolved_model,
messages=request.messages,
proxy=request.proxy # Assuming 'proxy' is part of ChatRequest; if not, adjust accordingly
):
timestamp = int(datetime.now().timestamp())
if isinstance(response, ImageResponse):
# Handle image responses
yield f"data: {json.dumps({'image_url': response.images, 'alt': response.alt})}\n\n"
else:
# Handle text responses
yield f"data: {json.dumps(create_chat_completion_data(response, resolved_model, timestamp))}\n\n"
# Indicate completion
timestamp = int(datetime.now().timestamp())
yield f"data: {json.dumps(create_chat_completion_data('', resolved_model, timestamp, 'stop'))}\n\n"
yield "data: [DONE]\n\n"
# Process non-streaming response with GizAI provider
async def process_non_streaming_response(request: ChatRequest) -> Dict[str, Any]:
chat_id = generate_chat_id()
resolved_model = resolve_model(request.model)
logger.info(f"Generated Chat ID: {chat_id} - Model: {resolved_model}")
# Instantiate the GizAI provider
gizai_provider = GizAI()
# Collect the responses
responses = []
async for response in gizai_provider.create_async_generator(
model=resolved_model,
messages=request.messages,
proxy=request.proxy # Assuming 'proxy' is part of ChatRequest; if not, adjust accordingly
):
if isinstance(response, ImageResponse):
# For image responses, collect image URLs
responses.append({"image_url": response.images, "alt": response.alt})
else:
# For text responses, append the text
responses.append(response)
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": resolved_model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": responses},
"finish_reason": "stop",
}
],
"usage": None,
}
# Helper function to format prompt from messages
def format_prompt(messages: list[Message]) -> str:
# Implement the prompt formatting as per GizAI's requirements
# Placeholder implementation
formatted_messages = []
for msg in messages:
if isinstance(msg.content, str):
formatted_messages.append(msg.content)
elif isinstance(msg.content, list):
text = msg.content[0].get("text", "")
formatted_messages.append(text)
return "\n".join(formatted_messages)
|