File size: 4,874 Bytes
d5686dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import json
import uuid
from typing import List, Dict, Any
from datetime import datetime

from aiohttp import ClientSession
from api.logger import setup_logger

logger = setup_logger(__name__)

class GizAIProvider:
    # Class variables
    url = "https://app.giz.ai/assistant/"
    api_endpoint = "https://app.giz.ai/api/data/users/inferenceServer.infer"
    working = True

    supports_system_message = True
    supports_message_history = True

    # Chat models
    default_model = 'chat-gemini-flash'
    chat_models = [
        default_model,
        'chat-gemini-pro',
        'chat-gpt4m',
        'chat-gpt4',
        'claude-sonnet',
        'claude-haiku',
        'llama-3-70b',
        'llama-3-8b',
        'mistral-large',
        'chat-o1-mini'
    ]

    # Image models
    image_models = [
        'flux1',
        'sdxl',
        'sd',
        'sd35',
    ]

    models = [*chat_models, *image_models]

    model_aliases = {
        # Chat model aliases
        "gemini-flash": "chat-gemini-flash",
        "gemini-pro": "chat-gemini-pro",
        "gpt-4o-mini": "chat-gpt4m",
        "gpt-4o": "chat-gpt4",
        "claude-3.5-sonnet": "claude-sonnet",
        "claude-3-haiku": "claude-haiku",
        "llama-3.1-70b": "llama-3-70b",
        "llama-3.1-8b": "llama-3-8b",
        "o1-mini": "chat-o1-mini",
        # Image model aliases
        "sd-1.5": "sd",
        "sd-3.5": "sd35",
        "flux-schnell": "flux1",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    def is_image_model(cls, model: str) -> bool:
        return model in cls.image_models

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, Any]],
        max_tokens: int,
        top_p: float,
        temperature: float,
        stream: bool = True,
        **kwargs
    ):
        model = cls.get_model(model)

        headers = {
            'Accept': 'application/json, text/plain, */*',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://app.giz.ai',
            'Pragma': 'no-cache',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 '
                          '(KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"'
        }

        async with ClientSession() as session:
            if cls.is_image_model(model):
                # Image generation
                prompt = messages[-1]["content"]
                data = {
                    "model": model,
                    "input": {
                        "width": "1024",
                        "height": "1024",
                        "steps": 4,
                        "output_format": "webp",
                        "batch_size": 1,
                        "mode": "plan",
                        "prompt": prompt
                    }
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                ) as response:
                    response.raise_for_status()
                    response_data = await response.json()
                    if response_data.get('status') == 'completed' and response_data.get('output'):
                        for url in response_data['output']:
                            yield {"images": url, "alt": "Generated Image"}
            else:
                # Chat completion
                data = {
                    "model": model,
                    "input": {
                        "messages": [
                            {
                                "type": "human",
                                "content": " ".join([msg['content'] for msg in messages])
                            }
                        ],
                        "mode": "plan"
                    },
                    "noStream": True
                }
                async with session.post(
                    cls.api_endpoint,
                    headers=headers,
                    data=json.dumps(data),
                ) as response:
                    response.raise_for_status()
                    result = await response.json()
                    yield result.get('output', '')