File size: 8,982 Bytes
cf30c69
 
261bb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fa2c3
261bb88
64fa2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261bb88
cf30c69
261bb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fa2c3
261bb88
 
 
 
 
 
cf30c69
261bb88
 
 
 
 
 
 
 
 
cf30c69
261bb88
 
 
 
 
 
 
 
 
 
 
 
64fa2c3
261bb88
 
 
 
64fa2c3
261bb88
 
 
64fa2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261bb88
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# api/utils.py

from datetime import datetime
import json
from typing import AsyncGenerator, Union

import aiohttp
from fastapi import HTTPException
from api.config import GIZAI_API_ENDPOINT, GIZAI_BASE_URL
from api.models import ChatRequest, ImageResponseModel, ChatCompletionResponse
from api.logger import setup_logger

logger = setup_logger(__name__)

class GizAI:
    # Chat models
    default_model = 'chat-gemini-flash'
    chat_models = [
        default_model,
        'chat-gemini-pro',
        'chat-gpt4m',
        'chat-gpt4',
        'claude-sonnet',
        'claude-haiku',
        'llama-3-70b',
        'llama-3-8b',
        'mistral-large',
        'chat-o1-mini'
    ]

    # Image models
    image_models = [
        'flux1',
        'sdxl',
        'sd',
        'sd35',
    ]

    models = [*chat_models, *image_models]
    
    model_aliases = {
        # Chat model aliases
        "gemini-flash": "chat-gemini-flash",
        "gemini-pro": "chat-gemini-pro",
        "gpt-4o-mini": "chat-gpt4m",
        "gpt-4o": "chat-gpt4",
        "claude-3.5-sonnet": "claude-sonnet",
        "claude-3-haiku": "claude-haiku",
        "llama-3.1-70b": "llama-3-70b",
        "llama-3.1-8b": "llama-3-8b",
        "o1-mini": "chat-o1-mini",
        # Image model aliases
        "sd-1.5": "sd",
        "sd-3.5": "sd35",
        "flux-schnell": "flux1",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    def is_image_model(cls, model: str) -> bool:
        return model in cls.image_models

async def process_gizai_stream_response(request: ChatRequest, model: str) -> AsyncGenerator[str, None]:
    async with aiohttp.ClientSession() as session:
        # Set up headers
        headers = {
            'Accept': 'application/json, text/plain, */*',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://app.giz.ai',
            'Pragma': 'no-cache',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"'
        }

        if GizAI.is_image_model(model):
            # Image generation logic (streaming might not make sense here)
            raise HTTPException(status_code=400, detail="Image generation does not support streaming.")
        else:
            # Chat completion logic
            messages_formatted = [
                {
                    "type": "human",
                    "content": msg.content if isinstance(msg.content, str) else msg.content[0].get("text", "")
                } for msg in request.messages
            ]
            data = {
                "model": model,
                "input": {
                    "messages": messages_formatted,
                    "mode": "plan"
                },
                "noStream": False  # Enable streaming
            }
            try:
                async with session.post(
                    GIZAI_API_ENDPOINT,
                    headers=headers,
                    json=data
                ) as response:
                    response.raise_for_status()
                    async for line in response.content:
                        if line:
                            decoded_line = line.decode('utf-8').strip()
                            if decoded_line.startswith("data:"):
                                content = decoded_line.replace("data: ", "")
                                yield f"data: {content}\n\n"
                # Indicate the end of the stream
                yield "data: [DONE]\n\n"
            except aiohttp.ClientResponseError as e:
                logger.error(f"HTTP error occurred: {e.status} - {e.message}")
                raise HTTPException(status_code=e.status, detail=str(e))
            except Exception as e:
                logger.error(f"Unexpected error: {str(e)}")
                raise HTTPException(status_code=500, detail=str(e))

async def process_gizai_non_stream_response(request: ChatRequest, model: str) -> Union[ImageResponseModel, ChatCompletionResponse]:
    async with aiohttp.ClientSession() as session:
        # Set up headers
        headers = {
            'Accept': 'application/json, text/plain, */*',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://app.giz.ai',
            'Pragma': 'no-cache',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
            'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
            'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Linux"'
        }

        if GizAI.is_image_model(model):
            # Image generation logic
            prompt = request.messages[-1].content if isinstance(request.messages[-1].content, str) else request.messages[-1].content[0].get("text", "")
            data = {
                "model": model,
                "input": {
                    "width": "1024",
                    "height": "1024",
                    "steps": 4,
                    "output_format": "webp",
                    "batch_size": 1,
                    "mode": "plan",
                    "prompt": prompt
                }
            }
            try:
                async with session.post(
                    GIZAI_API_ENDPOINT,
                    headers=headers,
                    json=data
                ) as response:
                    response.raise_for_status()
                    response_data = await response.json()
                    if response_data.get('status') == 'completed' and response_data.get('output'):
                        images = response_data['output']
                        return ImageResponseModel(images=images, alt="Generated Image")
                    else:
                        raise HTTPException(status_code=500, detail="Image generation failed.")
            except aiohttp.ClientResponseError as e:
                logger.error(f"HTTP error occurred: {e.status} - {e.message}")
                raise HTTPException(status_code=e.status, detail=str(e))
            except Exception as e:
                logger.error(f"Unexpected error: {str(e)}")
                raise HTTPException(status_code=500, detail=str(e))
        else:
            # Chat completion logic
            messages_formatted = [
                {
                    "type": "human",
                    "content": msg.content if isinstance(msg.content, str) else msg.content[0].get("text", "")
                } for msg in request.messages
            ]
            data = {
                "model": model,
                "input": {
                    "messages": messages_formatted,
                    "mode": "plan"
                },
                "noStream": True  # Disable streaming
            }
            try:
                async with session.post(
                    GIZAI_API_ENDPOINT,
                    headers=headers,
                    json=data
                ) as response:
                    response.raise_for_status()
                    result = await response.json()
                    return ChatCompletionResponse(
                        id=f"chatcmpl-{uuid.uuid4()}",
                        object="chat.completion",
                        created=int(datetime.now().timestamp()),
                        model=model,
                        choices=[
                            {
                                "index": 0,
                                "message": {"role": "assistant", "content": result.get('output', '')},
                                "finish_reason": "stop",
                            }
                        ],
                        usage=None,
                    )
            except aiohttp.ClientResponseError as e:
                logger.error(f"HTTP error occurred: {e.status} - {e.message}")
                raise HTTPException(status_code=e.status, detail=str(e))
            except Exception as e:
                logger.error(f"Unexpected error: {str(e)}")
                raise HTTPException(status_code=500, detail=str(e))