test24 / main.py
Niansuh's picture
Update main.py
18d089c verified
raw
history blame
18.1 kB
import re
import random
import string
import uuid
import json
import logging
import asyncio
from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Dict, Any, Optional, AsyncGenerator
from datetime import datetime
from fastapi.responses import StreamingResponse
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
super().__init__(self.message)
# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, url: str, alt: str):
self.url = url
self.alt = alt
def to_data_uri(image: Any) -> str:
return "data:image/png;base64,..." # Replace with actual base64 data
class Blackbox:
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
*image_models,
'Niansuh',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
'Niansuh': '@Niansuh',
}
model_referers = {
"blackboxai": f"{url}/?model=blackboxai",
"gpt-4o": f"{url}/?model=gpt-4o",
"gemini-pro": f"{url}/?model=gemini-pro",
"claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
"niansuh": "Niansuh",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
image: Any = None,
image_name: Optional[str] = None,
webSearchMode: bool = False,
**kwargs
) -> AsyncGenerator[Any, None]:
model = cls.get_model(model)
logger.info(f"Selected model: {model}")
if not cls.working or model not in cls.models:
logger.error(f"Model {model} is not working or not supported.")
raise ModelNotWorkingException(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"priority": "u=1, i",
"referer": cls.model_referers.get(model, cls.url),
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
}
if model in cls.model_prefixes:
prefix = cls.model_prefixes[model]
if not messages[0]['content'].startswith(prefix):
logger.debug(f"Adding prefix '{prefix}' to the first message.")
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
messages[-1]['id'] = random_id
messages[-1]['role'] = 'user'
if image is not None:
messages[-1]['data'] = {
'fileText': '',
'imageBase64': to_data_uri(image),
'title': image_name
}
messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
logger.debug("Image data added to the message.")
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 99999999,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"userSelectedModel": None,
"webSearchMode": webSearchMode,
}
if model in cls.agentMode:
data["agentMode"] = cls.agentMode[model]
elif model in cls.trendingAgentMode:
data["trendingAgentMode"] = cls.trendingAgentMode[model]
elif model in cls.userSelectedModel:
data["userSelectedModel"] = cls.userSelectedModel[model]
logger.info(f"Sending request to {cls.api_endpoint} with data: {data}")
timeout = ClientTimeout(total=60) # Set an appropriate timeout
retry_attempts = 10 # Set the number of retry attempts
for attempt in range(retry_attempts):
try:
async with ClientSession(headers=headers, timeout=timeout) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
logger.info(f"Received response with status {response.status}")
if model == 'ImageGeneration':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
logger.info(f"Image URL found: {image_url}")
yield ImageResponse(image_url, alt=messages[-1]['content'])
else:
logger.error("Image URL not found in the response.")
raise Exception("Image URL not found in the response")
else:
full_response = ""
search_results_json = ""
try:
async for chunk, _ in response.content.iter_chunks():
if chunk:
decoded_chunk = chunk.decode(errors='ignore')
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
if '$~~~$' in decoded_chunk:
search_results_json += decoded_chunk
else:
full_response += decoded_chunk
yield decoded_chunk
logger.info("Finished streaming response chunks.")
except Exception as e:
logger.exception("Error while iterating over response chunks.")
raise e
if data["webSearchMode"] and search_results_json:
match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
if match:
try:
search_results = json.loads(match.group(1))
formatted_results = "\n\n**Sources:**\n"
for i, result in enumerate(search_results[:5], 1):
formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
logger.info("Formatted search results.")
yield formatted_results
except json.JSONDecodeError as je:
logger.error("Failed to parse search results JSON.")
raise je
break # Exit the retry loop if successful
except ClientError as ce:
logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=502, detail="Error communicating with the external API. | NiansuhAI")
except asyncio.TimeoutError:
logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=504, detail="External API request timed out. | NiansuhAI")
except Exception as e:
logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=500, detail=str(e))
# FastAPI app setup
app = FastAPI()
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
stream: Optional[bool] = False
webSearchMode: Optional[bool] = False
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest, req: Request):
logger.info(f"Received chat completions request: {request}")
try:
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=messages,
image=None,
image_name=None,
webSearchMode=request.webSearchMode
)
if request.stream:
async def generate():
try:
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
image_markdown = f"![image]({chunk.url})"
response_chunk = create_response(image_markdown, request.model)
else:
response_chunk = create_response(chunk, request.model)
# Yield each chunk in SSE format
yield f"data: {json.dumps(response_chunk)}\n\n"
# Signal the end of the stream
yield "data: [DONE]\n\n"
except HTTPException as he:
error_response = {"error": he.detail}
yield f"data: {json.dumps(error_response)}\n\n"
except Exception as e:
logger.exception("Error during streaming response generation.")
error_response = {"error": str(e)}
yield f"data: {json.dumps(error_response)}\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"![image]({chunk.url})\n"
else:
response_content += chunk
logger.info("Completed non-streaming response generation.")
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": {
"prompt_tokens": sum(len(msg['content'].split()) for msg in messages),
"completion_tokens": len(response_content.split()),
"total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(response_content.split())
},
}
except ModelNotWorkingException as e:
logger.warning(f"Model not working: {e}")
raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail}")
raise he
except Exception as e:
logger.exception("An unexpected error occurred while processing the chat completions request.")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/models")
async def get_models():
logger.info("Fetching available models.")
return {"data": [{"id": model} for model in Blackbox.models]}
# Additional endpoints for better functionality
@app.get("/v1/health")
async def health_check():
"""Health check endpoint to verify the service is running."""
return {"status": "ok"}
@app.get("/v1/models/{model}/status")
async def model_status(model: str):
"""Check if a specific model is available."""
if model in Blackbox.models:
return {"model": model, "status": "available"}
elif model in Blackbox.model_aliases:
actual_model = Blackbox.model_aliases[model]
return {"model": actual_model, "status": "available via alias"}
else:
raise HTTPException(status_code=404, detail="Model not found")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)