test24 / api /provider /gizai.py
Niansuh's picture
Update api/provider/gizai.py
19d4631 verified
raw
history blame
6.26 kB
import uuid
from datetime import datetime
import json
from typing import Any, Dict, Optional
import httpx
from fastapi import HTTPException
from api.models import ChatRequest
from api.logger import setup_logger
logger = setup_logger(__name__)
# Base URL for giz.ai
GIZAI_BASE_URL = "https://app.giz.ai"
GIZAI_API_ENDPOINT = f"{GIZAI_BASE_URL}/api/data/users/inferenceServer.infer"
# Headers for giz.ai
GIZAI_HEADERS = {
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.9',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://app.giz.ai',
'Pragma': 'no-cache',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"'
}
# List of models supported by giz.ai
GIZAI_CHAT_MODELS = [
'chat-gemini-flash',
'chat-gemini-pro',
'chat-gpt4m',
'chat-gpt4',
'claude-sonnet',
'claude-haiku',
'llama-3-70b',
'llama-3-8b',
'mistral-large',
'chat-o1-mini'
]
GIZAI_IMAGE_MODELS = [
'flux1',
'sdxl',
'sd',
'sd35',
]
GIZAI_MODELS = GIZAI_CHAT_MODELS + GIZAI_IMAGE_MODELS
GIZAI_MODEL_ALIASES = {
# Chat model aliases
"gemini-flash": "chat-gemini-flash",
"gemini-pro": "chat-gemini-pro",
"gpt-4o-mini": "chat-gpt4m",
"gpt-4o": "chat-gpt4",
"claude-3.5-sonnet": "claude-sonnet",
"claude-3-haiku": "claude-haiku",
"llama-3.1-70b": "llama-3-70b",
"llama-3.1-8b": "llama-3-8b",
"o1-mini": "chat-o1-mini",
# Image model aliases
"sd-1.5": "sd",
"sd-3.5": "sd35",
"flux-schnell": "flux1",
}
def get_gizai_model(model: str) -> str:
if model in GIZAI_MODELS:
return model
elif model in GIZAI_MODEL_ALIASES:
return GIZAI_MODEL_ALIASES[model]
else:
# Default model
return 'chat-gemini-flash'
def is_image_model(model: str) -> bool:
return model in GIZAI_IMAGE_MODELS
async def process_streaming_response(request: ChatRequest):
# giz.ai does not support streaming
# So we can raise an error or process as non-streaming
return await process_non_streaming_response(request)
async def process_non_streaming_response(request: ChatRequest):
model = get_gizai_model(request.model)
async with httpx.AsyncClient() as client:
if is_image_model(model):
# Image generation
prompt = request.messages[-1].content
data = {
"model": model,
"input": {
"width": "1024",
"height": "1024",
"steps": 4,
"output_format": "webp",
"batch_size": 1,
"mode": "plan",
"prompt": prompt
}
}
try:
response = await client.post(
GIZAI_API_ENDPOINT,
headers=GIZAI_HEADERS,
json=data,
timeout=100,
)
response.raise_for_status()
response_data = response.json()
if response_data.get('status') == 'completed' and response_data.get('output'):
images = response_data['output']
# Return image response (e.g., URLs)
return {
"id": f"imggen-{uuid.uuid4()}",
"object": "image_generation",
"created": int(datetime.now().timestamp()),
"model": request.model,
"data": images,
}
else:
raise HTTPException(status_code=500, detail="Image generation failed")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred: {e}")
raise HTTPException(status_code=e.response.status_code, detail=str(e))
except httpx.RequestError as e:
logger.error(f"Error occurred during request: {e}")
raise HTTPException(status_code=500, detail=str(e))
else:
# Chat completion
messages_content = "\n".join([f"{msg.role}: {msg.content}" for msg in request.messages])
data = {
"model": model,
"input": {
"messages": [
{
"type": "human",
"content": messages_content
}
],
"mode": "plan"
},
"noStream": True
}
try:
response = await client.post(
GIZAI_API_ENDPOINT,
headers=GIZAI_HEADERS,
json=data,
timeout=100,
)
response.raise_for_status()
response_data = response.json()
output = response_data.get('output', '')
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": output},
"finish_reason": "stop",
}
],
"usage": None,
}
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred: {e}")
raise HTTPException(status_code=e.response.status_code, detail=str(e))
except httpx.RequestError as e:
logger.error(f"Error occurred during request: {e}")
raise HTTPException(status_code=500, detail=str(e))