import os import re import random import string import uuid import json import logging import asyncio import time from collections import defaultdict from typing import List, Dict, Any, Optional, Union, AsyncGenerator from datetime import datetime from aiohttp import ClientSession, ClientResponseError from fastapi import FastAPI, HTTPException, Request, Depends, Header from fastapi.responses import JSONResponse from pydantic import BaseModel # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s", handlers=[logging.StreamHandler()] ) logger = logging.getLogger(__name__) # Load environment variables API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute if not API_KEYS or API_KEYS == ['']: logger.error("No API keys found. Please set the API_KEYS environment variable.") raise Exception("API_KEYS environment variable not set.") # Simple in-memory rate limiter based solely on IP addresses rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()}) # Define cleanup interval and window CLEANUP_INTERVAL = 60 # seconds RATE_LIMIT_WINDOW = 60 # seconds async def rate_limiter_per_ip(request: Request): """ Rate limiter that enforces a limit based on the client's IP address. """ client_ip = request.client.host current_time = time.time() # Initialize or update the count and timestamp if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW: rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time} else: if rate_limit_store[client_ip]["count"] >= RATE_LIMIT: logger.warning(f"Rate limit exceeded for IP address: {client_ip}") raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address') rate_limit_store[client_ip]["count"] += 1 class Blackbox: label = "Blackbox AI" url = "https://www.blackbox.ai" api_endpoint = "https://www.blackbox.ai/api/chat" working = True supports_gpt_4 = True supports_stream = True supports_system_message = True supports_message_history = True default_model = 'blackboxai' image_models = ['ImageGeneration'] models = [ default_model, 'blackboxai-pro', *image_models, "llama-3.1-8b", 'llama-3.1-70b', 'llama-3.1-405b', 'gpt-4o', 'gemini-pro', 'gemini-1.5-flash', 'claude-sonnet-3.5', 'PythonAgent', 'JavaAgent', 'JavaScriptAgent', 'HTMLAgent', 'GoogleCloudAgent', 'AndroidDeveloper', 'SwiftDeveloper', 'Next.jsAgent', 'MongoDBAgent', 'PyTorchAgent', 'ReactAgent', 'XcodeAgent', 'AngularJSAgent', ] agentMode = { 'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"}, } trendingAgentMode = { "blackboxai": {}, "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'}, "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"}, 'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"}, 'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"}, 'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"}, 'PythonAgent': {'mode': True, 'id': "Python Agent"}, 'JavaAgent': {'mode': True, 'id': "Java Agent"}, 'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"}, 'HTMLAgent': {'mode': True, 'id': "HTML Agent"}, 'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"}, 'AndroidDeveloper': {'mode': True, 'id': "Android Developer"}, 'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"}, 'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"}, 'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"}, 'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"}, 'ReactAgent': {'mode': True, 'id': "React Agent"}, 'XcodeAgent': {'mode': True, 'id': "Xcode Agent"}, 'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"}, } userSelectedModel = { "gpt-4o": "gpt-4o", "gemini-pro": "gemini-pro", 'claude-sonnet-3.5': "claude-sonnet-3.5", } model_prefixes = { 'gpt-4o': '@GPT-4o', 'gemini-pro': '@Gemini-PRO', 'claude-sonnet-3.5': '@Claude-Sonnet-3.5', 'PythonAgent': '@Python Agent', 'JavaAgent': '@Java Agent', 'JavaScriptAgent': '@JavaScript Agent', 'HTMLAgent': '@HTML Agent', 'GoogleCloudAgent': '@Google Cloud Agent', 'AndroidDeveloper': '@Android Developer', 'SwiftDeveloper': '@Swift Developer', 'Next.jsAgent': '@Next.js Agent', 'MongoDBAgent': '@MongoDB Agent', 'PyTorchAgent': '@PyTorch Agent', 'ReactAgent': '@React Agent', 'XcodeAgent': '@Xcode Agent', 'AngularJSAgent': '@AngularJS Agent', 'blackboxai-pro': '@BLACKBOXAI-PRO', 'ImageGeneration': '@Image Generation', } model_referers = { "blackboxai": "/?model=blackboxai", "gpt-4o": "/?model=gpt-4o", "gemini-pro": "/?model=gemini-pro", "claude-sonnet-3.5": "/?model=claude-sonnet-3.5" } model_aliases = { "gemini-flash": "gemini-1.5-flash", "claude-3.5-sonnet": "claude-sonnet-3.5", "flux": "ImageGeneration", } @classmethod def get_model(cls, model: str) -> str: if model in cls.models: return model elif model in cls.model_aliases: return cls.model_aliases[model] else: return cls.default_model @staticmethod def generate_random_string(length: int = 7) -> str: characters = string.ascii_letters + string.digits return ''.join(random.choices(characters, k=length)) @staticmethod def generate_next_action() -> str: return uuid.uuid4().hex @staticmethod def generate_next_router_state_tree() -> str: router_state = [ "", { "children": [ "(chat)", { "children": [ "__PAGE__", {} ] } ] }, None, None, True ] return json.dumps(router_state) @staticmethod def clean_response(text: str) -> str: pattern = r'^\$\@\$v=undefined-rv1\$\@\$' cleaned_text = re.sub(pattern, '', text) return cleaned_text @classmethod async def generate_response( cls, model: str, messages: List[Dict[str, str]], proxy: Optional[str] = None, websearch: bool = False, **kwargs ) -> Dict[str, Any]: """ Generates a response from Blackbox AI for the /v1/chat/completions endpoint. Parameters: model (str): Model to use for generating responses. messages (List[Dict[str, str]]): Message history. proxy (Optional[str]): Proxy URL, if needed. websearch (bool): Enables or disables web search mode. **kwargs: Additional keyword arguments. Returns: Dict[str, Any]: The response dictionary in the format required by /v1/chat/completions. """ model = cls.get_model(model) chat_id = cls.generate_random_string() next_action = cls.generate_next_action() next_router_state_tree = cls.generate_next_router_state_tree() agent_mode = cls.agentMode.get(model, {}) trending_agent_mode = cls.trendingAgentMode.get(model, {}) prefix = cls.model_prefixes.get(model, "") formatted_prompt = "" for message in messages: role = message.get('role', '').capitalize() content = message.get('content', '') if role and content: formatted_prompt += f"{role}: {content}\n" if prefix: formatted_prompt = f"{prefix} {formatted_prompt}".strip() referer_path = cls.model_referers.get(model, f"/?model={model}") referer_url = f"{cls.url}{referer_path}" common_headers = { 'accept': '*/*', 'accept-language': 'en-US,en;q=0.9', 'cache-control': 'no-cache', 'origin': cls.url, 'pragma': 'no-cache', 'priority': 'u=1, i', 'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Linux"', 'sec-fetch-dest': 'empty', 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-origin', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) ' 'AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/129.0.0.0 Safari/537.36' } headers_api_chat = { 'Content-Type': 'application/json', 'Referer': referer_url } headers_api_chat_combined = {**common_headers, **headers_api_chat} payload_api_chat = { "messages": [ { "id": chat_id, "content": formatted_prompt, "role": "user" } ], "id": chat_id, "previewToken": None, "userId": None, "codeModelMode": True, "agentMode": agent_mode, "trendingAgentMode": trending_agent_mode, "isMicMode": False, "userSystemPrompt": None, "maxTokens": 1024, "playgroundTopP": 0.9, "playgroundTemperature": 0.5, "isChromeExt": False, "githubToken": None, "clickedAnswer2": False, "clickedAnswer3": False, "clickedForceWebSearch": False, "visitFromDelta": False, "mobileClient": False, "webSearchMode": websearch, "userSelectedModel": cls.userSelectedModel.get(model, model) } async with ClientSession(headers=common_headers) as session: try: async with session.post( cls.api_endpoint, headers=headers_api_chat_combined, json=payload_api_chat, proxy=proxy ) as response_api_chat: response_api_chat.raise_for_status() text = await response_api_chat.text() cleaned_response = cls.clean_response(text) response_data = { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion", "created": int(datetime.now().timestamp()), "model": model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": cleaned_response }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": sum(len(msg['content'].split()) for msg in messages), "completion_tokens": len(cleaned_response.split()), "total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(cleaned_response.split()) } } return response_data except ClientResponseError as e: error_text = f"Error {e.status}: {e.message}" try: error_response = await e.response.text()