Spaces:
Paused
Paused
File size: 8,844 Bytes
dc9eaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import re
import logging
import torch
import torchaudio
import random
import speechbrain
from speechbrain.inference.interfaces import Pretrained
from speechbrain.inference.text import GraphemeToPhoneme
logger = logging.getLogger(__name__)
class TTSInferencing(Pretrained):
"""
A ready-to-use wrapper for TTS (text -> mel_spec).
Arguments
---------
hparams
Hyperparameters (from HyperPyYAML)
"""
HPARAMS_NEEDED = ["modules", "input_encoder"]
MODULES_NEEDED = ["encoder_prenet", "pos_emb_enc",
"decoder_prenet", "pos_emb_dec",
"Seq2SeqTransformer", "mel_lin",
"stop_lin", "decoder_postnet"]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
lexicon = self.hparams.lexicon
lexicon = ["@@"] + lexicon
self.input_encoder = self.hparams.input_encoder
self.input_encoder.update_from_iterable(lexicon, sequence_input=False)
self.input_encoder.add_unk()
self.modules = self.hparams.modules
self.g2p = GraphemeToPhoneme.from_hparams("speechbrain/soundchoice-g2p")
def generate_padded_phonemes(self, texts):
"""Computes mel-spectrogram for a list of texts
Arguments
---------
texts: List[str]
texts to be converted to spectrogram
Returns
-------
tensors of output spectrograms
"""
# Preprocessing required at the inference time for the input text
# "label" below contains input text
# "phoneme_labels" contain the phoneme sequences corresponding to input text labels
phoneme_labels = list()
for label in texts:
phoneme_label = list()
label = self.custom_clean(label).upper()
words = label.split()
words = [word.strip() for word in words]
words_phonemes = self.g2p(words)
for i in range(len(words_phonemes)):
words_phonemes_seq = words_phonemes[i]
for phoneme in words_phonemes_seq:
if not phoneme.isspace():
phoneme_label.append(phoneme)
phoneme_labels.append(phoneme_label)
# encode the phonemes with input text encoder
encoded_phonemes = list()
for i in range(len(phoneme_labels)):
phoneme_label = phoneme_labels[i]
encoded_phoneme = torch.LongTensor(self.input_encoder.encode_sequence(phoneme_label)).to(self.device)
encoded_phonemes.append(encoded_phoneme)
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x) for x in encoded_phonemes]), dim=0, descending=True
)
max_input_len = input_lengths[0]
phoneme_padded = torch.LongTensor(len(encoded_phonemes), max_input_len).to(self.device)
phoneme_padded.zero_()
for seq_idx, seq in enumerate(encoded_phonemes):
phoneme_padded[seq_idx, : len(seq)] = seq
return phoneme_padded.to(self.device, non_blocking=True).float()
def encode_batch(self, texts):
"""Computes mel-spectrogram for a list of texts
Texts must be sorted in decreasing order on their lengths
Arguments
---------
texts: List[str]
texts to be encoded into spectrogram
Returns
-------
tensors of output spectrograms
"""
# generate phonemes and padd the input texts
encoded_phoneme_padded = self.generate_padded_phonemes(texts)
phoneme_prenet_emb = self.modules['encoder_prenet'](encoded_phoneme_padded)
# Positional Embeddings
phoneme_pos_emb = self.modules['pos_emb_enc'](encoded_phoneme_padded)
# Summing up embeddings
enc_phoneme_emb = phoneme_prenet_emb.permute(0,2,1) + phoneme_pos_emb
enc_phoneme_emb = enc_phoneme_emb.to(self.device)
with torch.no_grad():
# generate sequential predictions via transformer decoder
start_token = torch.full((80, 1), fill_value= 0)
start_token[1] = 2
decoder_input = start_token.repeat(enc_phoneme_emb.size(0), 1, 1)
decoder_input = decoder_input.to(self.device, non_blocking=True).float()
num_itr = 0
stop_condition = [False] * decoder_input.size(0)
max_iter = 100
# while not all(stop_condition) and num_itr < max_iter:
while num_itr < max_iter:
# Decoder Prenet
mel_prenet_emb = self.modules['decoder_prenet'](decoder_input).to(self.device).permute(0,2,1)
# Positional Embeddings
mel_pos_emb = self.modules['pos_emb_dec'](mel_prenet_emb).to(self.device)
# Summing up Embeddings
dec_mel_spec = mel_prenet_emb + mel_pos_emb
# Getting the target mask to avoid looking ahead
tgt_mask = self.hparams.lookahead_mask(dec_mel_spec).to(self.device)
# Getting the source mask
src_mask = torch.zeros(enc_phoneme_emb.shape[1], enc_phoneme_emb.shape[1]).to(self.device)
# Padding masks for source and targets
src_key_padding_mask = self.hparams.padding_mask(enc_phoneme_emb, pad_idx = self.hparams.blank_index).to(self.device)
tgt_key_padding_mask = self.hparams.padding_mask(dec_mel_spec, pad_idx = self.hparams.blank_index).to(self.device)
# Running the Seq2Seq Transformer
decoder_outputs = self.modules['Seq2SeqTransformer'](src = enc_phoneme_emb, tgt = dec_mel_spec, src_mask = src_mask, tgt_mask = tgt_mask,
src_key_padding_mask = src_key_padding_mask, tgt_key_padding_mask = tgt_key_padding_mask)
# Mel Linears
mel_linears = self.modules['mel_lin'](decoder_outputs).permute(0,2,1)
mel_postnet = self.modules['decoder_postnet'](mel_linears) # mel tensor output
mel_pred = mel_linears + mel_postnet # mel tensor output
stop_token_pred = self.modules['stop_lin'](decoder_outputs).squeeze(-1)
stop_condition_list = self.check_stop_condition(stop_token_pred)
# update the values of main stop conditions
stop_condition_update = [True if stop_condition_list[i] else stop_condition[i] for i in range(len(stop_condition))]
stop_condition = stop_condition_update
# Prepare input for the transformer input for next iteration
current_output = mel_pred[:, :, -1:]
decoder_input=torch.cat([decoder_input,current_output],dim=2)
num_itr = num_itr+1
mel_outputs = decoder_input[:, :, 1:]
return mel_outputs
def encode_text(self, text):
"""Runs inference for a single text str"""
return self.encode_batch([text])
def forward(self, text_list):
"Encodes the input texts."
return self.encode_batch(text_list)
def check_stop_condition(self, stop_token_pred):
"""
check if stop token / EOS reached or not for mel_specs in the batch
"""
# Applying sigmoid to perform binary classification
sigmoid_output = torch.sigmoid(stop_token_pred)
# Checking if the probability is greater than 0.5
stop_results = sigmoid_output > 0.8
stop_output = [all(result) for result in stop_results]
return stop_output
def custom_clean(self, text):
"""
Uses custom criteria to clean text.
Arguments
---------
text : str
Input text to be cleaned
model_name : str
whether to treat punctuations
Returns
-------
text : str
Cleaned text
"""
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "missus"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
text = re.sub(" +", " ", text)
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
|