TTSDemoApp / TTSInferencing.py
myhanhhyugen's picture
initial commits
dc9eaa3 verified
raw
history blame
8.84 kB
import re
import logging
import torch
import torchaudio
import random
import speechbrain
from speechbrain.inference.interfaces import Pretrained
from speechbrain.inference.text import GraphemeToPhoneme
logger = logging.getLogger(__name__)
class TTSInferencing(Pretrained):
"""
A ready-to-use wrapper for TTS (text -> mel_spec).
Arguments
---------
hparams
Hyperparameters (from HyperPyYAML)
"""
HPARAMS_NEEDED = ["modules", "input_encoder"]
MODULES_NEEDED = ["encoder_prenet", "pos_emb_enc",
"decoder_prenet", "pos_emb_dec",
"Seq2SeqTransformer", "mel_lin",
"stop_lin", "decoder_postnet"]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
lexicon = self.hparams.lexicon
lexicon = ["@@"] + lexicon
self.input_encoder = self.hparams.input_encoder
self.input_encoder.update_from_iterable(lexicon, sequence_input=False)
self.input_encoder.add_unk()
self.modules = self.hparams.modules
self.g2p = GraphemeToPhoneme.from_hparams("speechbrain/soundchoice-g2p")
def generate_padded_phonemes(self, texts):
"""Computes mel-spectrogram for a list of texts
Arguments
---------
texts: List[str]
texts to be converted to spectrogram
Returns
-------
tensors of output spectrograms
"""
# Preprocessing required at the inference time for the input text
# "label" below contains input text
# "phoneme_labels" contain the phoneme sequences corresponding to input text labels
phoneme_labels = list()
for label in texts:
phoneme_label = list()
label = self.custom_clean(label).upper()
words = label.split()
words = [word.strip() for word in words]
words_phonemes = self.g2p(words)
for i in range(len(words_phonemes)):
words_phonemes_seq = words_phonemes[i]
for phoneme in words_phonemes_seq:
if not phoneme.isspace():
phoneme_label.append(phoneme)
phoneme_labels.append(phoneme_label)
# encode the phonemes with input text encoder
encoded_phonemes = list()
for i in range(len(phoneme_labels)):
phoneme_label = phoneme_labels[i]
encoded_phoneme = torch.LongTensor(self.input_encoder.encode_sequence(phoneme_label)).to(self.device)
encoded_phonemes.append(encoded_phoneme)
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x) for x in encoded_phonemes]), dim=0, descending=True
)
max_input_len = input_lengths[0]
phoneme_padded = torch.LongTensor(len(encoded_phonemes), max_input_len).to(self.device)
phoneme_padded.zero_()
for seq_idx, seq in enumerate(encoded_phonemes):
phoneme_padded[seq_idx, : len(seq)] = seq
return phoneme_padded.to(self.device, non_blocking=True).float()
def encode_batch(self, texts):
"""Computes mel-spectrogram for a list of texts
Texts must be sorted in decreasing order on their lengths
Arguments
---------
texts: List[str]
texts to be encoded into spectrogram
Returns
-------
tensors of output spectrograms
"""
# generate phonemes and padd the input texts
encoded_phoneme_padded = self.generate_padded_phonemes(texts)
phoneme_prenet_emb = self.modules['encoder_prenet'](encoded_phoneme_padded)
# Positional Embeddings
phoneme_pos_emb = self.modules['pos_emb_enc'](encoded_phoneme_padded)
# Summing up embeddings
enc_phoneme_emb = phoneme_prenet_emb.permute(0,2,1) + phoneme_pos_emb
enc_phoneme_emb = enc_phoneme_emb.to(self.device)
with torch.no_grad():
# generate sequential predictions via transformer decoder
start_token = torch.full((80, 1), fill_value= 0)
start_token[1] = 2
decoder_input = start_token.repeat(enc_phoneme_emb.size(0), 1, 1)
decoder_input = decoder_input.to(self.device, non_blocking=True).float()
num_itr = 0
stop_condition = [False] * decoder_input.size(0)
max_iter = 100
# while not all(stop_condition) and num_itr < max_iter:
while num_itr < max_iter:
# Decoder Prenet
mel_prenet_emb = self.modules['decoder_prenet'](decoder_input).to(self.device).permute(0,2,1)
# Positional Embeddings
mel_pos_emb = self.modules['pos_emb_dec'](mel_prenet_emb).to(self.device)
# Summing up Embeddings
dec_mel_spec = mel_prenet_emb + mel_pos_emb
# Getting the target mask to avoid looking ahead
tgt_mask = self.hparams.lookahead_mask(dec_mel_spec).to(self.device)
# Getting the source mask
src_mask = torch.zeros(enc_phoneme_emb.shape[1], enc_phoneme_emb.shape[1]).to(self.device)
# Padding masks for source and targets
src_key_padding_mask = self.hparams.padding_mask(enc_phoneme_emb, pad_idx = self.hparams.blank_index).to(self.device)
tgt_key_padding_mask = self.hparams.padding_mask(dec_mel_spec, pad_idx = self.hparams.blank_index).to(self.device)
# Running the Seq2Seq Transformer
decoder_outputs = self.modules['Seq2SeqTransformer'](src = enc_phoneme_emb, tgt = dec_mel_spec, src_mask = src_mask, tgt_mask = tgt_mask,
src_key_padding_mask = src_key_padding_mask, tgt_key_padding_mask = tgt_key_padding_mask)
# Mel Linears
mel_linears = self.modules['mel_lin'](decoder_outputs).permute(0,2,1)
mel_postnet = self.modules['decoder_postnet'](mel_linears) # mel tensor output
mel_pred = mel_linears + mel_postnet # mel tensor output
stop_token_pred = self.modules['stop_lin'](decoder_outputs).squeeze(-1)
stop_condition_list = self.check_stop_condition(stop_token_pred)
# update the values of main stop conditions
stop_condition_update = [True if stop_condition_list[i] else stop_condition[i] for i in range(len(stop_condition))]
stop_condition = stop_condition_update
# Prepare input for the transformer input for next iteration
current_output = mel_pred[:, :, -1:]
decoder_input=torch.cat([decoder_input,current_output],dim=2)
num_itr = num_itr+1
mel_outputs = decoder_input[:, :, 1:]
return mel_outputs
def encode_text(self, text):
"""Runs inference for a single text str"""
return self.encode_batch([text])
def forward(self, text_list):
"Encodes the input texts."
return self.encode_batch(text_list)
def check_stop_condition(self, stop_token_pred):
"""
check if stop token / EOS reached or not for mel_specs in the batch
"""
# Applying sigmoid to perform binary classification
sigmoid_output = torch.sigmoid(stop_token_pred)
# Checking if the probability is greater than 0.5
stop_results = sigmoid_output > 0.8
stop_output = [all(result) for result in stop_results]
return stop_output
def custom_clean(self, text):
"""
Uses custom criteria to clean text.
Arguments
---------
text : str
Input text to be cleaned
model_name : str
whether to treat punctuations
Returns
-------
text : str
Cleaned text
"""
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "missus"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
text = re.sub(" +", " ", text)
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text