from langchain.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import ( PyPDFLoader, DataFrameLoader, ) from langchain.document_loaders.csv_loader import CSVLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chains.retrieval_qa.base import RetrievalQA from langchain.chat_models import ChatOpenAI from bot.utils.show_log import logger import pandas as pd import threading import glob import os import queue class Query: def __init__(self, question, llm, index): self.question = question self.llm = llm self.index = index def query(self): """Query the vectorstore.""" llm = self.llm or ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0) chain = RetrievalQA.from_chain_type( llm, retriever=self.index.as_retriever() ) return chain.run(self.question) class SearchableIndex: def __init__(self, path): self.path = path @classmethod def get_splits(cls, path, target_col=None, sheet_name=None): extension = os.path.splitext(path)[1].lower() doc_list = None if extension == ".txt": with open(path, 'r') as txt: data = txt.read() text_split = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0, length_function=len) doc_list = text_split.split_text(data) elif extension == ".pdf": loader = PyPDFLoader(path) pages = loader.load_and_split() text_split = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0, length_function=len) doc_list = [] for pg in pages: pg_splits = text_split.split_text(pg.page_content) doc_list.extend(pg_splits) elif extension == ".xml": df = pd.read_excel(io=path, engine='openpyxl', sheet_name=sheet_name) df_loader = DataFrameLoader(df, page_content_column=target_col) doc_list = df_loader.load() elif extension == ".csv": csv_loader = CSVLoader(path) doc_list = csv_loader.load() if doc_list is None: raise ValueError("Unsupported file format") return doc_list @classmethod def merge_or_create_index(cls, index_store, faiss_db, embeddings, logger): if os.path.exists(index_store): local_db = FAISS.load_local(index_store, embeddings) local_db.merge_from(faiss_db) local_db.save_local(index_store) logger.info("Merge index completed") else: faiss_db.save_local(folder_path=index_store) logger.info("New store created and loaded...") local_db = FAISS.load_local(index_store, embeddings) return local_db @classmethod def check_and_load_index(cls, index_files, embeddings, logger, result_queue): if index_files: local_db = FAISS.load_local(index_files[0], embeddings) else: raise logger.warning("Index store does not exist") result_queue.put(local_db) # Put the result in the queue @classmethod def embed_index(cls, url, path, llm, prompt, target_col=None, sheet_name=None): embeddings = OpenAIEmbeddings() if url != 'NO_URL' and path: doc_list = cls.get_splits(path, target_col, sheet_name) faiss_db = FAISS.from_texts(doc_list, embeddings) index_store = os.path.splitext(path)[0] + "_index" local_db = cls.merge_or_create_index(index_store, faiss_db, embeddings, logger) return Query(prompt, llm, local_db) elif url == 'NO_URL' and path: index_files = glob.glob(os.path.join(path, '*_index')) result_queue = queue.Queue() # Create a queue to store the result thread = threading.Thread(target=cls.check_and_load_index, args=(index_files, embeddings, logger, result_queue)) thread.start() local_db = result_queue.get() # Retrieve the result from the queue return Query(prompt, llm, local_db) if __name__ == '__main__': pass # Examples for search query # index = SearchableIndex.embed_index( # path="/Users/macbook/Downloads/AI_test_exam/ChatBot/learning_documents/combined_content.txt") # prompt = 'show more detail about types of data collected' # llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0) # result = SearchableIndex.query(prompt, llm=llm, index=index) # print(result)