Spaces:
Running
Running
File size: 17,826 Bytes
45180a0 a796108 9061790 abcac4c a796108 45180a0 e4853cf 45180a0 a796108 45180a0 a796108 e4853cf 45180a0 a796108 45180a0 a796108 9061790 238d915 9061790 3e40ebd 238d915 9061790 a796108 9061790 a796108 9061790 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 a796108 45180a0 eb820e1 45180a0 eb820e1 45180a0 eb820e1 9061790 eb820e1 45180a0 eb820e1 45180a0 eb820e1 9061790 eb820e1 45180a0 9061790 45180a0 9061790 4a0bec4 45180a0 526644e 45180a0 9061790 526644e 45180a0 eb820e1 45180a0 eb820e1 9061790 eb820e1 45180a0 eb820e1 45180a0 eb820e1 9061790 45180a0 a796108 45180a0 9061790 45180a0 9061790 a796108 9061790 45180a0 9061790 eb820e1 9061790 45180a0 9061790 eb820e1 45180a0 9061790 eb820e1 9061790 45180a0 9061790 45180a0 9061790 45180a0 9061790 45180a0 9061790 eb820e1 9061790 45180a0 9061790 eb820e1 45180a0 9061790 eb820e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
ChatDataSQLAskCallBackHandler
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from langchain.utilities.sql_database import SQLDatabase
from langchain.chains import LLMChain
from sqlalchemy import create_engine, MetaData
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.self_query.myscale import MyScaleTranslator
from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings
from langchain.vectorstores import MyScaleSettings
from chains.arxiv_chains import MyScaleWithoutMetadataJson
import re
import pandas as pd
from os import environ
import streamlit as st
import datetime
environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
st.set_page_config(page_title="ChatData")
st.header("ChatData")
# query_model_name = "gpt-3.5-turbo-instruct"
query_model_name = "text-davinci-003"
chat_model_name = "gpt-3.5-turbo-16k"
def hint_arxiv():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"*If you want to search papers with complex filters*:\n\n"
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
"*If you want to ask questions based on papers in database*:\n\n"
"- What is PageRank?\n"
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
"- Introduce some applications of GANs published around 2019.\n"
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
"- Is it possible to synthesize room temperature super conductive material?")
def hint_sql_arxiv():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
def hint_wiki():
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"- Which company did Elon Musk found?\n"
"- What is Iron Gwazi?\n"
"- What is a Ring in mathematics?\n"
"- 苹果的发源地是那里?\n")
def hint_sql_wiki():
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE wiki.Wikipedia (
`id` String,
`title` String,
`text` String,
`url` String,
`wiki_id` UInt64,
`views` Float32,
`paragraph_id` UInt64,
`langs` UInt32,
`emb` Array(Float32),
VECTOR INDEX vec_idx emb TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
CONSTRAINT emb_len CHECK length(emb) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
sel_map = {
'Wikipedia': {
"database": "wiki",
"table": "Wikipedia",
"hint": hint_wiki,
"hint_sql": hint_sql_wiki,
"doc_prompt": PromptTemplate(
input_variables=["page_content", "url", "title", "ref_id", "views"],
template="Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"),
"metadata_cols": [
AttributeInfo(
name="title",
description="title of the wikipedia page",
type="string",
),
AttributeInfo(
name="text",
description="paragraph from this wiki page",
type="string",
),
AttributeInfo(
name="views",
description="number of views",
type="float"
),
],
"must_have_cols": ['id', 'title', 'url', 'text', 'views'],
"vector_col": "emb",
"text_col": "text",
"metadata_col": "metadata",
"emb_model": lambda: SentenceTransformerEmbeddings(
model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2',)
},
'ArXiv Papers': {
"database": "default",
"table": "ChatArXiv",
"hint": hint_arxiv,
"hint_sql": hint_sql_arxiv,
"doc_prompt": PromptTemplate(
input_variables=["page_content", "id", "title", "ref_id",
"authors", "pubdate", "categories"],
template="Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"),
"metadata_cols": [
AttributeInfo(
name=VirtualColumnName(name="pubdate"),
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
],
"must_have_cols": ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'],
"vector_col": "vector",
"text_col": "abstract",
"metadata_col": "metadata",
"emb_model": lambda: HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
}
}
def try_eval(x):
try:
return eval(x, {'datetime': datetime})
except:
return x
def display(dataframe, columns_=None, index=None):
if len(dataframe) > 0:
if index:
dataframe.set_index(index)
if columns_:
st.dataframe(dataframe[columns_])
else:
st.dataframe(dataframe)
else:
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
def build_embedding_model(_sel):
with st.spinner("Loading Model..."):
embeddings = sel_map[_sel]["emb_model"]()
return embeddings
def build_retriever(_sel):
with st.spinner(f"Connecting DB for {_sel}..."):
myscale_connection = {
"host": st.secrets['MYSCALE_HOST'],
"port": st.secrets['MYSCALE_PORT'],
"username": st.secrets['MYSCALE_USER'],
"password": st.secrets['MYSCALE_PASSWORD'],
}
config = MyScaleSettings(**myscale_connection,
database=sel_map[_sel]["database"],
table=sel_map[_sel]["table"],
column_map={
"id": "id",
"text": sel_map[_sel]["text_col"],
"vector": sel_map[_sel]["vector_col"],
"metadata": sel_map[_sel]["metadata_col"]
})
doc_search = MyScaleWithoutMetadataJson(st.session_state[f"emb_model_{_sel}"], config,
must_have_cols=sel_map[_sel]['must_have_cols'])
with st.spinner(f"Building Self Query Retriever for {_sel}..."):
metadata_field_info = sel_map[_sel]["metadata_cols"]
retriever = SelfQueryRetriever.from_llm(
OpenAI(model_name=query_model_name, openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False, structured_query_translator=MyScaleTranslator())
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
(HumanMessagePromptTemplate, '{question}')])
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
with st.spinner(f'Building QA Chain with Self-query for {_sel}...'):
chain = ArXivQAwithSourcesChain(
retriever=retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name=chat_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=sel_map[_sel]["doc_prompt"],
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
with st.spinner(f'Building Vector SQL Database Retriever for {_sel}...'):
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
engine = create_engine(
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel]["database"]}?protocol=https')
metadata = MetaData(bind=engine)
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=_myscale_prompt,
)
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
model=st.session_state[f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]["must_have_cols"])
sql_query_chain = VectorSQLDatabaseChain.from_llm(
llm=OpenAI(model_name=query_model_name, openai_api_key=OPENAI_API_KEY, temperature=0),
prompt=PROMPT,
top_k=10,
return_direct=True,
db=SQLDatabase(engine, None, metadata, max_string_length=1024),
sql_cmd_parser=output_parser,
native_format=True
)
sql_retriever = VectorSQLDatabaseChainRetriever(
sql_db_chain=sql_query_chain, page_content_key=sel_map[_sel]["text_col"])
with st.spinner(f'Building QA Chain with Vector SQL for {_sel}...'):
sql_chain = ArXivQAwithSourcesChain(
retriever=sql_retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name=chat_model_name,
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=sel_map[_sel]["doc_prompt"],
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
return {
"metadata_columns": [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info],
"retriever": retriever,
"chain": chain,
"sql_retriever": sql_retriever,
"sql_chain": sql_chain
}
@st.cache_resource
def build_all():
sel_map_obj = {}
for k in sel_map:
st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
sel_map_obj[k] = build_retriever(k)
return sel_map_obj
if 'retriever' not in st.session_state:
st.session_state["sel_map_obj"] = build_all()
sel = st.selectbox('Choose the knowledge base you want to ask with:',
options=['ArXiv Papers', 'Wikipedia'])
sel_map[sel]['hint']()
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
with tab_sql:
sel_map[sel]['hint_sql']()
st.text_input("Ask a question:", key='query_sql')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_sql')
cols[1].button("Ask", key='ask_sql')
plc_hldr = st.empty()
if st.session_state.search_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Query Log', expanded=True):
callback = ChatDataSQLSearchCallBackHandler()
try:
docs = st.session_state.sel_map_obj[sel]["sql_retriever"].get_relevant_documents(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs)
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Chat Log', expanded=True):
callback = ChatDataSQLAskCallBackHandler()
try:
ret = st.session_state.sel_map_obj[sel]["sql_chain"](
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
with tab_self_query:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.dataframe(st.session_state.sel_map_obj[sel]["metadata_columns"])
st.text_input("Ask a question:", key='query_self')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_self')
cols[1].button("Ask", key='ask_self')
plc_hldr = st.empty()
if st.session_state.search_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Query Log', expanded=True):
call_back = None
callback = ChatDataSelfSearchCallBackHandler()
try:
docs = st.session_state.sel_map_obj[sel]["retriever"].get_relevant_documents(
st.session_state.query_self, callbacks=[callback])
print(docs)
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, sel_map[sel]["must_have_cols"])
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Chat Log', expanded=True):
call_back = None
callback = ChatDataSelfAskCallBackHandler()
try:
ret = st.session_state.sel_map_obj[sel]["chain"](
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
|