Spaces:
Running
Running
File size: 6,174 Bytes
fab8405 a796108 fab8405 e4853cf fab8405 45180a0 a796108 45180a0 fab8405 45180a0 fab8405 9061790 fab8405 9061790 fab8405 9061790 fab8405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import json
import time
import pandas as pd
from os import environ
import streamlit as st
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
ChatDataSQLAskCallBackHandler
from chat import chat_page
from login import login, back_to_main
from helper import build_tools, build_agents, build_all, sel_map, display
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
st.set_page_config(page_title="ChatData", page_icon="https://myscale.com/favicon.ico")
st.header("ChatData")
if 'retriever' not in st.session_state:
st.session_state["sel_map_obj"] = build_all()
st.session_state["tools"] = build_tools()
if login():
if "user_name" in st.session_state:
chat_page()
elif "jump_query_ask" in st.session_state and st.session_state.jump_query_ask:
sel = st.selectbox('Choose the knowledge base you want to ask with:',
options=['ArXiv Papers', 'Wikipedia'])
sel_map[sel]['hint']()
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
with tab_sql:
sel_map[sel]['hint_sql']()
st.text_input("Ask a question:", key='query_sql')
cols = st.columns([1, 1, 1, 4])
cols[0].button("Query", key='search_sql')
cols[1].button("Ask", key='ask_sql')
cols[2].button("Back", key='back_sql', on_click=back_to_main)
plc_hldr = st.empty()
if st.session_state.search_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Query Log', expanded=True):
callback = ChatDataSQLSearchCallBackHandler()
try:
docs = st.session_state.sel_map_obj[sel]["sql_retriever"].get_relevant_documents(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs)
except Exception as e:
st.write('Oops π΅ Something bad happened...')
raise e
if st.session_state.ask_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Chat Log', expanded=True):
callback = ChatDataSQLAskCallBackHandler()
try:
ret = st.session_state.sel_map_obj[sel]["sql_chain"](
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
except Exception as e:
st.write('Oops π΅ Something bad happened...')
raise e
with tab_self_query:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='π‘')
st.dataframe(st.session_state.sel_map_obj[sel]["metadata_columns"])
st.text_input("Ask a question:", key='query_self')
cols = st.columns([1, 1, 1, 4])
cols[0].button("Query", key='search_self')
cols[1].button("Ask", key='ask_self')
cols[2].button("Back", key='back_self', on_click=back_to_main)
plc_hldr = st.empty()
if st.session_state.search_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Query Log', expanded=True):
call_back = None
callback = ChatDataSelfSearchCallBackHandler()
try:
docs = st.session_state.sel_map_obj[sel]["retriever"].get_relevant_documents(
st.session_state.query_self, callbacks=[callback])
print(docs)
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, sel_map[sel]["must_have_cols"])
except Exception as e:
st.write('Oops π΅ Something bad happened...')
raise e
if st.session_state.ask_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Chat Log', expanded=True):
call_back = None
callback = ChatDataSelfAskCallBackHandler()
try:
ret = st.session_state.sel_map_obj[sel]["chain"](
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
except Exception as e:
st.write('Oops π΅ Something bad happened...')
raise e |