File size: 7,286 Bytes
e931b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import hashlib
from datetime import datetime
from typing import List, Optional

import pandas as pd
from clickhouse_connect import get_client
from langchain.schema.embeddings import Embeddings
from langchain.vectorstores.myscale import MyScaleWithoutJSON, MyScaleSettings
from streamlit.runtime.uploaded_file_manager import UploadedFile

from backend.chat_bot.tools import parse_files, extract_embedding
from backend.construct.build_retriever_tool import create_retriever_tool
from logger import logger


class ChatBotKnowledgeTable:
    def __init__(self, host, port, username, password,
                 embedding: Embeddings, parser_api_key: str, db="chat",
                 kb_table="private_kb", tool_table="private_tool") -> None:
        super().__init__()
        personal_files_schema_ = f"""
            CREATE TABLE IF NOT EXISTS {db}.{kb_table}(
                entity_id String,
                file_name String,
                text String,
                user_id String,
                created_by DateTime,
                vector Array(Float32),
                CONSTRAINT cons_vec_len CHECK length(vector) = 768,
                VECTOR INDEX vidx vector TYPE MSTG('metric_type=Cosine')
            ) ENGINE = ReplacingMergeTree ORDER BY entity_id
        """

        # `tool_name` represent private knowledge database name.
        private_knowledge_base_schema_ = f"""
            CREATE TABLE IF NOT EXISTS {db}.{tool_table}(
                tool_id String,
                tool_name String,
                file_names Array(String),
                user_id String,
                created_by DateTime,
                tool_description String
            ) ENGINE = ReplacingMergeTree ORDER BY tool_id
        """
        self.personal_files_table = kb_table
        self.private_knowledge_base_table = tool_table
        config = MyScaleSettings(
            host=host,
            port=port,
            username=username,
            password=password,
            database=db,
            table=kb_table,
        )
        self.client = get_client(
            host=config.host,
            port=config.port,
            username=config.username,
            password=config.password,
        )
        self.client.command("SET allow_experimental_object_type=1")
        self.client.command(personal_files_schema_)
        self.client.command(private_knowledge_base_schema_)
        self.parser_api_key = parser_api_key
        self.vector_store = MyScaleWithoutJSON(
            embedding=embedding,
            config=config,
            must_have_cols=["file_name", "text", "created_by"],
        )

    # List all files with given `user_id`
    def list_files(self, user_id: str):
        query = f"""
        SELECT DISTINCT file_name, COUNT(entity_id) AS num_paragraph, 
            arrayMax(arrayMap(x->length(x), groupArray(text))) AS max_chars
        FROM {self.vector_store.config.database}.{self.personal_files_table}
        WHERE user_id = '{user_id}' GROUP BY file_name
        """
        return [r for r in self.vector_store.client.query(query).named_results()]

    # Parse and embedding files
    def add_by_file(self, user_id, files: List[UploadedFile]):
        data = parse_files(self.parser_api_key, user_id, files)
        data = extract_embedding(self.vector_store.embeddings, data)
        self.vector_store.client.insert_df(
            table=self.personal_files_table,
            df=pd.DataFrame(data),
            database=self.vector_store.config.database,
        )

    # Remove all files and private_knowledge_bases with given `user_id`
    def clear(self, user_id: str):
        self.vector_store.client.command(
            f"DELETE FROM {self.vector_store.config.database}.{self.personal_files_table} "
            f"WHERE user_id='{user_id}'"
        )
        query = f"""DELETE FROM {self.vector_store.config.database}.{self.private_knowledge_base_table} 
                    WHERE user_id  = '{user_id}'"""
        self.vector_store.client.command(query)

    def create_private_knowledge_base(
            self, user_id: str, tool_name: str, tool_description: str, files: Optional[List[str]] = None
    ):
        self.vector_store.client.insert_df(
            self.private_knowledge_base_table,
            pd.DataFrame(
                [
                    {
                        "tool_id": hashlib.sha256(
                            (user_id + tool_name).encode("utf-8")
                        ).hexdigest(),
                        "tool_name": tool_name,  # tool_name represent user's private knowledge base.
                        "file_names": files,
                        "user_id": user_id,
                        "created_by": datetime.now(),
                        "tool_description": tool_description,
                    }
                ]
            ),
            database=self.vector_store.config.database,
        )

    # Show all private knowledge bases with given `user_id`
    def list_private_knowledge_bases(self, user_id: str, private_knowledge_base=None):
        extended_where = f"AND tool_name = '{private_knowledge_base}'" if private_knowledge_base else ""
        query = f"""
        SELECT tool_name, tool_description, length(file_names) 
        FROM {self.vector_store.config.database}.{self.private_knowledge_base_table}
        WHERE user_id = '{user_id}' {extended_where}
        """
        return [r for r in self.vector_store.client.query(query).named_results()]

    def remove_private_knowledge_bases(self, user_id: str, private_knowledge_bases: List[str]):
        unique_list = list(set(private_knowledge_bases))
        unique_list = ",".join([f"'{t}'" for t in unique_list])
        query = f"""DELETE FROM {self.vector_store.config.database}.{self.private_knowledge_base_table}
                    WHERE user_id  = '{user_id}' AND tool_name IN [{unique_list}]"""
        self.vector_store.client.command(query)

    def as_retrieval_tools(self, user_id, tool_name=None):
        logger.info(f"")
        private_knowledge_bases = self.list_private_knowledge_bases(user_id=user_id, private_knowledge_base=tool_name)
        retrievers = {}
        for private_kb in private_knowledge_bases:
            file_names_sql = f"""
            SELECT arrayJoin(file_names) FROM (
                SELECT file_names 
                FROM chat.private_tool
                WHERE user_id = '{user_id}' AND tool_name = '{private_kb["tool_name"]}'
            )
            """
            logger.info(f"user_id is {user_id}, file_names_sql is {file_names_sql}")
            res = self.client.query(file_names_sql)
            file_names = []
            for line in res.result_rows:
                file_names.append(line[0])
            file_names = ', '.join(f"'{item}'" for item in file_names)
            logger.info(f"user_id is {user_id}, file_names is {file_names}")
            retrievers[private_kb["tool_name"]] = create_retriever_tool(
                self.vector_store.as_retriever(
                    search_kwargs={"where_str": f"user_id='{user_id}' AND file_name IN ({file_names})"},
                ),
                tool_name=private_kb["tool_name"],
                description=private_kb["tool_description"],
            )
        return retrievers