import pickle from pathlib import Path from typing import Dict, Type, Union, Literal, List import torch from my_chess.learner.models import ( Model, ModelConfig, DeepChessAlphaBeta, DeepChessAlphaBetaConfig, DeepChessEvaluator, DeepChessEvaluatorConfig, DeepChessFE, DeepChessFEConfig ) from huggingface_hub import PyTorchModelHubMixin class DCFE(DeepChessFE, PyTorchModelHubMixin): def __init__( self, hidden_dims:Union[int, List[int]]=[4096, 1024, 256, 128], activations:Union[str, List[str]]='relu', batch_norm:bool = True) -> None: input_sample = torch.rand(1,8,8,111) super().__init__(input_sample, config=DeepChessFEConfig(**dict( hidden_dims=hidden_dims, activations=activations, batch_norm=batch_norm, ))) class DCEvaluator(DeepChessEvaluator, PyTorchModelHubMixin): def __init__( self, feature_extractor:Type[Model]=None, feature_extractor_config:ModelConfig=None, feature_extractor_param_dir:Union[str, Path]=None, hidden_dims:Union[int, List[int]]=[512, 252, 128], activations:Union[str, List[str]]='relu', batch_norm:bool=True,) -> None: input_sample = torch.rand(1,8,8,111) if feature_extractor is None: feature_extractor = DCFE.from_pretrained("mzimm003/DeepChessReplicationFeatureExtractor") super().__init__(input_sample, config=DeepChessEvaluatorConfig(**dict( feature_extractor=feature_extractor, feature_extractor_config=feature_extractor_config, feature_extractor_param_dir=feature_extractor_param_dir, hidden_dims=hidden_dims, activations=activations, batch_norm=batch_norm, ))) class DCMinMax(DeepChessAlphaBeta, PyTorchModelHubMixin): def __init__( self, board_evaluator:Type[Model]=None, board_evaluator_config:ModelConfig=None, board_evaluator_param_dir:Union[str, Path]=None, max_depth:int = 8, iterate_depths:bool = True, move_sort:Literal['none', 'random', 'evaluation'] = 'evaluation') -> None: input_sample = torch.rand(1,8,8,111) if board_evaluator is None: board_evaluator = DCEvaluator.from_pretrained("mzimm003/DeepChessReplicationBoardEvaluator") super().__init__(input_sample, config=DeepChessAlphaBetaConfig(**dict( board_evaluator=board_evaluator, board_evaluator_config=board_evaluator_config, board_evaluator_param_dir=board_evaluator_param_dir, max_depth=max_depth, iterate_depths=iterate_depths, move_sort=move_sort, ))) def get_model_attrs(dir:Union[str, Path]): best_model_dir = Path(dir).resolve() best_model_class = None best_model_config = None with open(best_model_dir/"params.pkl",'rb') as f: x = pickle.load(f) best_model_class = x['model'] best_model_config = x['model_config'] latest_checkpoint = sorted(best_model_dir.glob('checkpoint*'), reverse=True)[0]/'model.pt' return best_model_class, best_model_config, latest_checkpoint def main1(kwargs=None): mod_cls, mod_config, mod_chkpt = get_model_attrs("/opt/ray/results/ChessFeatureExtractor/AutoEncoder_1557d_00000_0_batch_size=256,model_config=ref_ph_a52f5213,lr=0.0001_2024-07-12_22-30-58") model = DCFE(**mod_config.asDict()) model.load_state_dict(torch.load(mod_chkpt,map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"))) model.save_pretrained('/opt/pretrained_models/DCFE') model.push_to_hub( "mzimm003/DeepChessReplicationFeatureExtractor") mod_cls, mod_config, mod_chkpt = get_model_attrs("/opt/ray/results/DeepChessEvaluator/ChessEvaluation_9866d_00000_0_learning_rate_scheduler_config=step_size_200_gamma_0_9,model_config=ref_ph_a52f5213,lr=0.1000_2024-07-13_09-18-52") model = DCEvaluator(**mod_config.asDict()) model.load_state_dict(torch.load(mod_chkpt,map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"))) model.save_pretrained('/opt/pretrained_models/DCEvaluator') model.push_to_hub( "mzimm003/DeepChessReplicationBoardEvaluator") model = DCMinMax( **dict( board_evaluator=mod_cls, board_evaluator_config=mod_config, board_evaluator_param_dir=mod_chkpt, max_depth=3, move_sort='evaluation')) model.save_pretrained('/opt/pretrained_models/DCMinMax') model.push_to_hub( "mzimm003/DeepChessReplicationMinMax") def main(kwargs=None): modelfe = DCFE.from_pretrained("mzimm003/DeepChessReplicationFeatureExtractor") modeleval = DCEvaluator.from_pretrained("mzimm003/DeepChessReplicationBoardEvaluator") modelminmax = DCMinMax.from_pretrained("mzimm003/DeepChessReplicationMinMax") pass if __name__ == "__main__": main()