File size: 12,351 Bytes
14a71e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# import numpy as np
# import pandas as pd
# from sklearn.model_selection import train_test_split
# from sklearn.neural_network import MLPRegressor
# from sklearn.preprocessing import StandardScaler

# # Step 1: Create random food data
# def create_random_food_data(num_samples=100):
#     np.random.seed(42)
#     areas = ['American', 'Mexican', 'Italian', 'Indian', 'Chinese']
#     categories = ['Beef', 'Chicken', 'Vegetarian', 'Seafood', 'Pork']
#     vegetarian_categories = ['Vegetarian']
    
#     data = []
#     for _ in range(num_samples):
#         area = np.random.choice(areas)
#         category = np.random.choice(categories)
#         ingredients_count = np.random.randint(3, 10)
#         calories = np.random.randint(200, 600)
#         protein = np.random.randint(10, 40)
#         carbs = np.random.randint(20, 70)
#         fats = np.random.randint(5, 30)
        
#         data.append([area, category, ingredients_count, calories, protein, carbs, fats])
    
#     df = pd.DataFrame(data, columns=['Area', 'Category', 'IngredientsCount', 'Calories', 'Protein', 'Carbs', 'Fats'])
#     return df

# # Step 2: Preprocess the Data
# def preprocess_data(df):
#     features = df[['Area', 'Category', 'IngredientsCount']]
#     targets = df[['Calories', 'Protein', 'Carbs', 'Fats']]
    
#     # Encode categorical variables
#     features = pd.get_dummies(features, columns=['Area', 'Category'])
    
#     return features, targets

# # Step 3: Train the MLP Model
# def train_mlp_model(X, y):
#     # Split data into training and test sets
#     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
#     # Standardize the features
#     scaler = StandardScaler()
#     X_train_scaled = scaler.fit_transform(X_train)
#     X_test_scaled = scaler.transform(X_test)
    
#     # Initialize and train the MLP model
#     mlp_model = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=500, random_state=42)
#     mlp_model.fit(X_train_scaled, y_train)
    
#     return mlp_model, scaler

# # Step 4: Generate Diet Plan
# def generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df):
#     meal_names = ['Breakfast', 'Morning Snack', 'Lunch', 'Afternoon Snack', 'Dinner']
#     calorie_distribution = [0.25, 0.10, 0.35, 0.10, 0.20]
    
#     # Adjust the distribution if number of meals is less than 5
#     if num_meals < 5:
#         calorie_distribution = calorie_distribution[:num_meals]
#         calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution]
#     elif num_meals > 5:
#         # Evenly distribute the remaining calories across the extra meals
#         extra_meals = num_meals - 5
#         extra_meal_calories = (sum(calorie_distribution) - 1) / extra_meals
#         calorie_distribution.extend([extra_meal_calories] * extra_meals)
#         calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution]
#         meal_names.extend([f'Extra Meal {i+1}' for i in range(extra_meals)])
    
#     diet_plan = []
    
#     # Filter foods based on the user's region and diet preference
#     if diet_preference == 'Vegetarian':
#         region_foods = foods_df[(foods_df['Area'] == region) & (foods_df['Category'] == 'Vegetarian')]
#     else:
#         region_foods = foods_df[foods_df['Area'] == region]
    
#     for i in range(num_meals):
#         # Randomly select a food from the filtered region and preference
#         food = region_foods.sample(1).iloc[0]
        
#         # Adjust the portion to meet the meal calorie requirement
#         portion_factor = (total_calories * calorie_distribution[i]) / food['Calories']
#         diet_plan.append({
#             'Meal': meal_names[i % len(meal_names)],
#             'Food': food['Category'],
#             'Area': food['Area'],
#             'IngredientsCount': food['IngredientsCount'],
#             'Calories': food['Calories'] * portion_factor,
#             'Protein': food['Protein'] * portion_factor,
#             'Carbs': food['Carbs'] * portion_factor,
#             'Fats': food['Fats'] * portion_factor
#         })
    
#     return diet_plan

# # Main Function
# if __name__ == "__main__":
#     # Create random food data
#     foods_df = create_random_food_data()
    
#     # Preprocess the data
#     X, y = preprocess_data(foods_df)
    
#     # Train the MLP model
#     mlp_model, scaler = train_mlp_model(X, y)
    
#     # Get user input
#     total_calories = float(input("Enter the total daily calories you want to consume: "))
#     num_meals = int(input("Enter the number of meals per day: "))
#     region = input("Enter your region (American, Mexican, Italian, Indian, Chinese): ")
#     diet_preference = input("Enter your diet preference (Vegetarian, Non-Vegetarian): ")
    
#     # Generate and print the diet plan
#     diet_plan = generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df)
#     for meal in diet_plan:
#         print(f"{meal['Meal']}: {meal['Food']} ({meal['Area']}) - {meal['Calories']:.2f} kcal, "
#               f"{meal['Protein']:.2f}g protein, {meal['Carbs']:.2f}g carbs, {meal['Fats']:.2f}g fats")


import requests
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error

# Step 1: Fetch Food Data from TheMealDB API
def fetch_mealdb_data():
    meals = []
    for letter in 'abcdefghijklmnopqrstuvwxyz':
        url = f'https://www.themealdb.com/api/json/v1/1/search.php?f={letter}'
        response = requests.get(url)
        data = response.json()
        if data['meals']:
            meals.extend(data['meals'])
    return meals

# Step 2: Preprocess the Data
# def preprocess_data(meals):
#     features = []
#     targets = []
    
#     for meal in meals:
#         area = meal['strArea'] if meal['strArea'] else 'Unknown'
#         category = meal['strCategory'] if meal['strCategory'] else 'Unknown'
#         meal_type = np.random.choice(['Breakfast', 'Lunch', 'Dinner', 'Snack'])
#         ingredients_count = sum([1 for i in range(1, 21) if meal[f'strIngredient{i}']])
        
#         # Example target values (you can replace these with real data)
#         calories = np.random.randint(200, 600)
#         protein = np.random.randint(10, 40)
#         carbs = np.random.randint(20, 70)
#         fats = np.random.randint(5, 30)
        
#         features.append([area, category, meal_type, ingredients_count])
#         targets.append([calories, protein, carbs, fats])
    
#     feature_df = pd.DataFrame(features, columns=['Area', 'Category', 'MealType', 'IngredientsCount'])
#     target_df = pd.DataFrame(targets, columns=['Calories', 'Protein', 'Carbs', 'Fats'])
    
#     # Encode categorical variables
#     feature_df = pd.get_dummies(feature_df, columns=['Area', 'Category', 'MealType'])
    
#     return feature_df, target_df

def preprocess_data(meals):
    features = []
    targets = []
    
    for meal in meals:
        area = meal['strArea'] if meal['strArea'] else 'Unknown'
        category = meal['strCategory'] if meal['strCategory'] else 'Unknown'
        meal_type = np.random.choice(['Breakfast', 'Lunch', 'Dinner', 'Snack'])
        ingredients_count = sum([1 for i in range(1, 21) if meal[f'strIngredient{i}']])
        meal_name = meal['strMeal'] if meal['strMeal'] else 'Unknown'  # Add meal name

        # Example target values (replace with real data if available)
        calories = np.random.randint(200, 600)
        protein = np.random.randint(10, 40)
        carbs = np.random.randint(20, 70)
        fats = np.random.randint(5, 30)
        
        # Include meal_name in features
        features.append([meal_name, area, category, meal_type, ingredients_count])
        targets.append([calories, protein, carbs, fats])
    
    feature_df = pd.DataFrame(features, columns=['MealName', 'Area', 'Category', 'MealType', 'IngredientsCount'])
    target_df = pd.DataFrame(targets, columns=['Calories', 'Protein', 'Carbs', 'Fats'])
    
    # Encode categorical variables except MealName
    feature_df = pd.get_dummies(feature_df, columns=['Area', 'Category', 'MealType'])
    
    return feature_df, target_df


# Step 3: Train the MLP Model
def train_mlp_model(X, y):
    numeric_X = X.select_dtypes(include=[np.number])
    X_train, X_test, y_train, y_test = train_test_split(numeric_X, y, test_size=0.2, random_state=42)
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    
    mlp_model = MLPRegressor(hidden_layer_sizes=(150, 100, 50), activation='relu', solver='adam', max_iter=1000, random_state=42)
    mlp_model.fit(X_train_scaled, y_train)
    
    y_pred = mlp_model.predict(X_test_scaled)
    
    mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    mae = mean_absolute_error(y_test, y_pred)
    
    print(f"Model Performance:")
    print(f"Mean Squared Error (MSE): {mse:.2f}")
    print(f"R-squared (R²): {r2:.2f}")
    print(f"Mean Absolute Error (MAE): {mae:.2f}")
    
    return mlp_model, scaler

# Step 4: Generate Diet Plan
def generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df):
    meal_names = ['Breakfast', 'Morning Snack', 'Lunch', 'Afternoon Snack', 'Dinner']
    calorie_distribution = [0.25, 0.10, 0.35, 0.10, 0.20]
    
    if num_meals < 5:
        calorie_distribution = calorie_distribution[:num_meals]
        calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution]
    elif num_meals > 5:
        extra_meals = num_meals - 5
        extra_meal_calories = (sum(calorie_distribution) - 1) / extra_meals
        calorie_distribution.extend([extra_meal_calories] * extra_meals)
        calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution]
        meal_names.extend([f'Extra Meal {i+1}' for i in range(extra_meals)])
    
    diet_plan = []
    
    if diet_preference == 'Vegetarian':
        region_foods = foods_df[(foods_df['Area'] == region) & (foods_df['Category'] == 'Vegetarian')]
    else:
        region_foods = foods_df[foods_df['Area'] == region]
    
    for i in range(num_meals):
        meal_type = meal_names[i % len(meal_names)]
        meal_foods = region_foods[region_foods['MealType'] == meal_type]
        
        if meal_foods.empty:
            continue
        
        food = meal_foods.sample(1).iloc[0]
        portion_factor = (total_calories * calorie_distribution[i]) / food['Calories']
        diet_plan.append({
            'Meal': meal_type,
            'Food': food['Category'],
            'Area': food['Area'],
            'IngredientsCount': food['IngredientsCount'],
            'Calories': food['Calories'] * portion_factor,
            'Protein': food['Protein'] * portion_factor,
            'Carbs': food['Carbs'] * portion_factor,
            'Fats': food['Fats'] * portion_factor
        })
    
    return diet_plan

# Main Function
if __name__ == "__main__":
    meals = fetch_mealdb_data()
    
    X, y = preprocess_data(meals)
    
    mlp_model, scaler = train_mlp_model(X, y)
    
    total_calories = float(input("Enter the total daily calories you want to consume: "))
    num_meals = int(input("Enter the number of meals per day: "))
    region = input("Enter your region (American, Mexican, Italian, Indian, Chinese): ")
    diet_preference = input("Enter your diet preference (Vegetarian, Non-Vegetarian): ")
    
    diet_plan = generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, X)
    
    for meal in diet_plan:
        print(f"{meal['Meal']}: {meal['Food']} ({meal['Area']}) - {meal['Calories']:.2f} kcal, "
              f"{meal['Protein']:.2f}g protein, {meal['Carbs']:.2f}g carbs, {meal['Fats']:.2f}g fats")