Spaces:
Runtime error
Runtime error
File size: 12,571 Bytes
208053f f475b49 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f d27fe32 208053f 15f5208 d27fe32 208053f 15f5208 208053f d27fe32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import csv
import json
import multiprocessing as mp
import os
from typing import Any, Dict, List, NewType, Optional, Union
import numpy as np
import yaml
from datasets import Dataset, DatasetDict, load_dataset
from easygoogletranslate import EasyGoogleTranslate
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from tqdm import tqdm
from yaml.loader import SafeLoader
LANGUAGE_TO_SUFFIX = {
"chinese_simplified": "zh-CN",
"french": "fr",
"portuguese": "pt",
"english": "en",
"arabic": "ar",
"hindi": "hi",
"indonesian": "id",
"amharic": "am",
"bengali": "bn",
"burmese": "my",
"chinese": "zh-CN",
"swahili": "sw",
"bulgarian": "bg",
"thai": "th",
"urdu": "ur",
"turkish": "tr",
"spanish": "es",
"chinese": "zh",
"greek": "el",
"german": "de",
}
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
PARAMS = NewType("PARAMS", Dict[str, Any])
def read_parameters(args_path) -> PARAMS:
with open(args_path) as f:
args = yaml.load(f, Loader=SafeLoader)
return args
def get_key(key_path):
with open(key_path) as f:
key = f.read().split("\n")[0]
return key
def _translate_example(
example: Dict[str, str], src_language: str, target_language: str
):
translator = EasyGoogleTranslate(
source_language=LANGUAGE_TO_SUFFIX[src_language],
target_language=LANGUAGE_TO_SUFFIX[target_language],
timeout=30,
)
try:
return {
"premise": translator.translate(example["premise"]),
"hypothesis": translator.translate(example["hypothesis"]),
"label": "",
}
except Exception as e:
print(e)
def choose_few_shot_examples(
train_dataset: Dataset,
few_shot_size: int,
context: List[str],
selection_criteria: str,
lang: str,
) -> List[Dict[str, Union[str, int]]]:
"""Selects few-shot examples from training datasets
Args:
train_dataset (Dataset): Training Dataset
few_shot_size (int): Number of few-shot examples
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
Returns:
List[Dict[str, Union[str, int]]]: Selected examples
"""
selected_examples = []
example_idxs = []
if selection_criteria == "first_k":
example_idxs = list(range(few_shot_size))
elif selection_criteria == "random":
example_idxs = (
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
.astype(int)
.tolist()
)
ic_examples = [train_dataset[idx] for idx in example_idxs]
ic_examples = [
{
"premise": example["premise"],
"hypothesis": example["hypothesis"],
"label": NUMBER_TO_TAG[example["label"]],
}
for example in ic_examples
]
for idx, ic_language in enumerate(context):
(
selected_examples.append(ic_examples[idx])
if ic_language == lang
else (
selected_examples.append(
_translate_example(
example=ic_examples[idx],
src_language=lang,
target_language=ic_language,
)
)
)
)
return selected_examples
def load_xnli_dataset(
dataset_name: str,
lang: str,
split: str,
limit: int = 200,
) -> Union[Dataset, DatasetDict]:
"""
Args:
lang (str): Language for which xnli dataset is to be loaded
split (str): Train test of validation split of the model to load
dataset_frac (float): Fraction of examples to load. Defaults to 1.0
Returns:
Union[Dataset, DatasetDict]: huggingface dataset object
"""
if dataset_name == "indicxnli": ##PJ:To add except hindi
dataset = load_dataset("Divyanshu/indicxnli", LANGUAGE_TO_SUFFIX[lang])[split]
else:
dataset = load_dataset("xnli", LANGUAGE_TO_SUFFIX[lang])[split]
return dataset.select(np.arange(limit))
def construct_prompt(
instruction: str, test_example: dict, ic_examples: List[dict], zero_shot: bool
):
example_prompt = PromptTemplate(
input_variables=["premise", "hypothesis", "label"],
template="Premise: {premise}\n Hypothesis: {hypothesis} \n Label{label}",
)
zero_shot_template = (
f"""{instruction}""" + "\n hypothesis: {hypothesis} + \n Premise: {premise}" ""
)
prompt = (
FewShotPromptTemplate(
examples=ic_examples,
prefix=instruction,
example_prompt=example_prompt,
suffix="Premise: {premise} \n Hypothesis: {hypothesis}",
input_variables=["hypothesis", "premise"],
)
if not zero_shot
else PromptTemplate(
input_variables=["hypothesis", "premise"], template=zero_shot_template
)
)
return (
prompt.format(
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
),
test_example["label"],
)
def dump_metrics(
lang: str,
config: Dict[str, str],
r1: float,
r2: float,
rL: float,
metric_logger_path: str,
):
# Check if the metric logger file exists
file_exists = os.path.exists(metric_logger_path)
# Open the CSV file in append mode
with open(metric_logger_path, "a", newline="") as f:
csvwriter = csv.writer(f, delimiter=",")
# Write header row if the file is newly created
if not file_exists:
header = [
"Language",
"Prefix",
"Input",
"Context",
"Output",
"R1",
"R2",
"RL",
]
csvwriter.writerow(header)
csvwriter.writerow(
[
lang,
config["prefix"],
config["input"],
config["context"][0],
config["output"],
r1,
r2,
rL,
]
)
def dump_predictions(idx, response, label, response_logger_file):
obj = {"q_idx": idx, "prediction": response, "label": label}
with open(response_logger_file, "a") as f:
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
def compute_rouge(scorer, pred, label):
score = scorer.score(pred, label)
return score["rouge1"], score["rouge2"], score["rougeL"]
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
translator = EasyGoogleTranslate(
source_language="en",
target_language=LANGUAGE_TO_SUFFIX[target_language],
timeout=10,
)
return translator.translate(basic_instruction)
def _translate_prediction_to_output_language(
prediction: str, prediction_language: str, output_language: str
) -> str:
translator = EasyGoogleTranslate(
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
target_language=LANGUAGE_TO_SUFFIX[output_language],
timeout=10,
)
return translator.translate(prediction)
def create_instruction(lang: str):
basic_instruction = f"""
You are an NLP assistant whose purpose is to solve Natural Language Inference (NLI) problems.
NLI is the task of determining the inference relation between two texts: entailment,
contradiction, or neutral.
Your answer should be one word of the following - entailment, contradiction, or neutral.
Pay attention: The output should be only one word!!!!
"""
return (
basic_instruction
if lang == "english"
else _translate_instruction(basic_instruction, target_language=lang)
)
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool = False):
if not params:
params = read_parameters("../../parameters.yaml")
lang = params["selected_language"]
config = params["config"]
zero_shot = len(config["context"]) == 0
if not zero:
config_header = f"{config['input']}_{config['prefix']}_{config['context'][0]}"
else:
config_header = f"{config['input']}_{config['prefix']}_zero"
test_data = load_xnli_dataset(
dataset_name=params["dataset_name"],
lang=lang,
split="test",
limit=params["limit"],
)
pool = mp.Pool(processes=3)
# Iterate over test_data using tqdm for progress tracking
for idx, test_example in tqdm(enumerate(test_data), total=len(test_data)):
# Apply asynchronous processing of each test example
pool.apply_async(
process_test_example,
args=(
test_data,
config_header,
idx,
test_example,
config,
zero_shot,
lang,
params,
),
)
# Close the pool and wait for all processes to finish
pool.close()
pool.join()
def process_test_example(
test_data, config_header, idx, test_example, config, zero_shot, lang, params
):
try:
instruction = create_instruction(lang=config["prefix"])
text_example = {
"premise": test_example["premise"],
"hypothesis": test_example["hypothesis"],
"label": test_example["label"],
}
ic_examples = []
if not zero_shot:
ic_examples = choose_few_shot_examples(
train_dataset=test_data,
few_shot_size=len(config["context"]),
context=config["context"],
selection_criteria="random",
lang=params["selected_language"],
)
prompt, label = construct_prompt(
instruction=instruction,
test_example=text_example,
ic_examples=ic_examples,
zero_shot=zero_shot,
)
pred = get_prediction(
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
)
print(pred)
os.makedirs(
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
)
dump_predictions(
idx=idx,
response=pred,
label=label,
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
)
except Exception as e:
# Handle exceptions here
print(f"Error processing example {idx}: {e}")
def construct_prompt(
instruction: str,
test_example: dict,
zero_shot: bool,
num_examples: int,
lang: str,
config: Dict[str, str],
dataset_name: str = "xnli",
):
if not instruction:
print(lang)
instruction = create_instruction(lang)
example_prompt = PromptTemplate(
input_variables=["premise", "hypothesis", "label"],
template="Premise {premise}\n Hypothesis {hypothesis} \n{label}",
)
zero_shot_template = (
f"""{instruction}""" + "\n Hypothesis: {hypothesis} + \n Premise: {premise}" ""
)
if not zero_shot:
try:
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
except KeyError as e:
raise KeyError(
f"{lang} is not supported in {dataset_name} dataset, choose supported language in few-shot"
)
ic_examples = []
if not zero_shot:
ic_examples = choose_few_shot_examples(
train_dataset=test_data,
few_shot_size=num_examples,
context=[config["context"]] * num_examples,
selection_criteria="random",
lang=lang,
)
prompt = (
FewShotPromptTemplate(
examples=ic_examples,
prefix=instruction,
example_prompt=example_prompt,
suffix="{premise} \n{hypothesis}",
input_variables=["hypothesis", "premise"],
)
if not zero_shot
else PromptTemplate(
input_variables=["hypothesis", "premise"], template=zero_shot_template
)
)
print("lang", lang)
print(config["input"], lang)
if config["input"] != lang:
test_example = _translate_example(
example=test_example, src_language=lang, target_language=config["input"]
)
return prompt.format(
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
)
|