naaz005 commited on
Commit
f8223c5
·
1 Parent(s): 651b050

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py CHANGED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ from sklearn.preprocessing import MinMaxScaler, StandardScaler
6
+ import segmentation_models as sm
7
+ from matplotlib import pyplot as plt
8
+ import random
9
+
10
+ from keras import backend as K
11
+ from keras.models import load_model
12
+
13
+ import gradio as gr
14
+
15
+ def jaccard_coef(y_true, y_pred):
16
+ y_true_flatten = K.flatten(y_true)
17
+ y_pred_flatten = K.flatten(y_pred)
18
+ intersection = K.sum(y_true_flatten * y_pred_flatten)
19
+ final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0)
20
+ return final_coef_value
21
+
22
+ weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666]
23
+ dice_loss = sm.losses.DiceLoss(class_weights = weights)
24
+ focal_loss = sm.losses.CategoricalFocalLoss()
25
+ total_loss = dice_loss + (1 * focal_loss)
26
+
27
+ satellite_model = load_model('model/satellite-imagery.h5',
28
+ custom_objects=({'dice_loss_plus_1focal_loss': total_loss,
29
+ 'jaccard_coef': jaccard_coef}))
30
+
31
+ def process_input_image(image_source):
32
+ image = np.expand_dims(image_source, 0)
33
+
34
+ prediction = satellite_model.predict(image)
35
+ predicted_image = np.argmax(prediction, axis=3)
36
+
37
+ predicted_image = predicted_image[0,:,:]
38
+ predicted_image = predicted_image * 50
39
+ return 'Predicted Masked Image', predicted_image
40
+
41
+ my_app = gr.Blocks()
42
+
43
+ with my_app:
44
+ gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
45
+ with gr.Tabs():
46
+ with gr.TabItem("Select your image"):
47
+ with gr.Row():
48
+ with gr.Column():
49
+ img_source = gr.Image(label="Please select source Image", shape=(256, 256))
50
+ source_image_loader = gr.Button("Load above Image")
51
+ with gr.Column():
52
+ output_label = gr.Label(label="Image Info")
53
+ img_output = gr.Image(label="Image Output")
54
+ source_image_loader.click(
55
+ process_input_image,
56
+ [
57
+ img_source
58
+ ],
59
+ [
60
+ output_label,
61
+ img_output
62
+ ]
63
+ )
64
+
65
+ my_app.launch(debug=True)