import streamlit as st import cv2 import torch from PIL import Image from transformers import AutoImageProcessor, AutoModelForImageClassification # Load processor and model processor = AutoImageProcessor.from_pretrained("RickyIG/emotion_face_image_classification") model = AutoModelForImageClassification.from_pretrained("RickyIG/emotion_face_image_classification") # Title of the Streamlit app st.title("Emotion Detection App") # Option to choose between uploading image, video, or using live camera option = st.radio("Select an option", ("Upload Image", "Upload Video", "Use Live Camera")) if option == "Upload Image": # Upload image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_container_width=True) # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Make predictions with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # raw model outputs (before softmax) predicted_class_idx = logits.argmax(-1).item() # predicted class index # Get the label of the predicted class label = model.config.id2label[predicted_class_idx] # Display the result st.write(f"Predicted Emotion: {label}") elif option == "Upload Video": # Upload video file uploaded_video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"]) if uploaded_video is not None: # Save video to a temporary path temp_video_path = "/tmp/uploaded_video.mp4" with open(temp_video_path, "wb") as f: f.write(uploaded_video.read()) # Open the video using OpenCV cap = cv2.VideoCapture(temp_video_path) if not cap.isOpened(): st.error("Error: Could not open video.") else: stframe = st.empty() # Placeholder to display live video feed while True: # Capture frame-by-frame ret, frame = cap.read() if not ret: break # Convert frame (BGR) to RGB (PIL format) image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Make predictions with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() label = model.config.id2label[predicted_class_idx] # Display the result cv2.putText(frame, f"Emotion: {label}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA) # Convert the frame to RGB for Streamlit frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) stframe.image(frame_rgb, channels="RGB", use_container_width=True) cap.release() elif option == "Use Live Camera": cap = cv2.VideoCapture(0) if not cap.isOpened(): st.error("Error: Could not open webcam.") else: stframe = st.empty() while True: ret, frame = cap.read() if not ret: break # Convert frame (BGR) to RGB (PIL format) image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Make predictions with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() label = model.config.id2label[predicted_class_idx] # Display the result cv2.putText(frame, f"Emotion: {label}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA) # Convert the frame to RGB for Streamlit frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) stframe.image(frame_rgb, channels="RGB", use_container_width=True) cap.release() # Add a dynamic signature with Bastliga font st.markdown("

Developed by M.Nabeel
", unsafe_allow_html=True)