Upload 2 files
Browse files- app.py +83 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
6 |
+
from io import BytesIO
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Load processor and model
|
10 |
+
processor = AutoImageProcessor.from_pretrained("RickyIG/emotion_face_image_classification")
|
11 |
+
model = AutoModelForImageClassification.from_pretrained("RickyIG/emotion_face_image_classification")
|
12 |
+
|
13 |
+
# Title of the Streamlit app
|
14 |
+
st.title("Emotion Detection App")
|
15 |
+
|
16 |
+
# Option to choose between uploading image or using live camera
|
17 |
+
option = st.radio("Select an option", ("Upload Image", "Use Live Camera"))
|
18 |
+
|
19 |
+
if option == "Upload Image":
|
20 |
+
# Upload image
|
21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Display the uploaded image
|
25 |
+
image = Image.open(uploaded_file)
|
26 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
27 |
+
|
28 |
+
# Preprocess the image
|
29 |
+
inputs = processor(images=image, return_tensors="pt")
|
30 |
+
|
31 |
+
# Make predictions
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(**inputs)
|
34 |
+
logits = outputs.logits # raw model outputs (before softmax)
|
35 |
+
predicted_class_idx = logits.argmax(-1).item() # predicted class index
|
36 |
+
|
37 |
+
# Get the label of the predicted class
|
38 |
+
label = model.config.id2label[predicted_class_idx]
|
39 |
+
|
40 |
+
# Display the result
|
41 |
+
st.write(f"Predicted Emotion: {label}")
|
42 |
+
|
43 |
+
elif option == "Use Live Camera":
|
44 |
+
# Use OpenCV to capture video from the front camera
|
45 |
+
cap = cv2.VideoCapture(0)
|
46 |
+
|
47 |
+
if not cap.isOpened():
|
48 |
+
st.error("Error: Could not open webcam.")
|
49 |
+
else:
|
50 |
+
stframe = st.empty() # Placeholder to display live camera feed
|
51 |
+
|
52 |
+
while True:
|
53 |
+
# Capture frame-by-frame
|
54 |
+
ret, frame = cap.read()
|
55 |
+
|
56 |
+
if not ret:
|
57 |
+
st.error("Error: Failed to capture frame.")
|
58 |
+
break
|
59 |
+
|
60 |
+
# Convert frame (BGR) to RGB (PIL format)
|
61 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
62 |
+
|
63 |
+
# Preprocess the image
|
64 |
+
inputs = processor(images=image, return_tensors="pt")
|
65 |
+
|
66 |
+
# Make predictions
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model(**inputs)
|
69 |
+
logits = outputs.logits # raw model outputs (before softmax)
|
70 |
+
predicted_class_idx = logits.argmax(-1).item() # predicted class index
|
71 |
+
|
72 |
+
# Get the label of the predicted class
|
73 |
+
label = model.config.id2label[predicted_class_idx]
|
74 |
+
|
75 |
+
# Display the result
|
76 |
+
cv2.putText(frame, f"Emotion: {label}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
|
77 |
+
|
78 |
+
# Convert the frame to RGB for Streamlit
|
79 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
80 |
+
stframe.image(frame_rgb, channels="RGB", use_column_width=True)
|
81 |
+
|
82 |
+
# Release the capture when finished
|
83 |
+
cap.release()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.41.1
|
2 |
+
opencv-python==4.10.0.84
|
3 |
+
torch==2.5.1
|
4 |
+
transformers==4.33.2
|
5 |
+
Pillow==11.0.0
|
6 |
+
torch==2.5.1
|
7 |
+
tokenizers==0.13.3
|