Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from torch import nn | |
from model_def import NeuralNetwork | |
labels_map = { | |
0 : "atrial fibrillation", | |
1 : "sinus arrhythmia", | |
2 : "bradycardia", | |
3 : "1st degree av block", | |
4 : "sinus rhythm", | |
} | |
PATH = 'model/' #ResNet-lead-0.pth' | |
lead_1_model = NeuralNetwork() | |
lead_1_model.load_state_dict(torch.load(f"{PATH}/ResNet-lead-0.pth", map_location=torch.device('cpu'))) | |
lead_2_model = NeuralNetwork() | |
lead_2_model.load_state_dict(torch.load(f"{PATH}/ResNet-lead-1.pth", map_location=torch.device('cpu'))) | |
lead_3_model = NeuralNetwork() | |
lead_3_model.load_state_dict(torch.load(f"{PATH}/ResNet-lead-2.pth", map_location=torch.device('cpu'))) | |
def helper(sig, model): | |
inpt = sig[:, np.newaxis, :] | |
with torch.no_grad(): | |
res = model(torch.from_numpy(inpt)) | |
res = torch.exp(res) | |
prediction_scores = res.numpy() | |
return prediction_scores | |
def make_predictions_indi(lead1, lead2, lead3): | |
p1 = helper(lead1, lead_1_model) | |
p2 = helper(lead2, lead_2_model) | |
p3 = helper(lead3, lead_3_model) | |
p_avg = (p1 + p2 + p3)/3 | |
return p_avg |