import numpy as np from read_data import prepare_all_leads from postprocessing import make_predictions_indi, labels_map from scipy import stats as st import warnings warnings.filterwarnings("ignore") def make_prediction(path): leads = prepare_all_leads(path) # print(leads[0][0].shape) # print(leads[1][0].shape) # print(leads[2][0].shape) # visualize_sig([leads[0][0], leads[1][0], leads[2][0]]) x = make_predictions_indi(*leads) # print(x.mean(axis=0)) # print(np.argmax(x, axis=1)) index = st.mode(np.argmax(x, axis=1))[0][0] confidence = x.mean(axis=0)[index] return labels_map[index], float(confidence) if __name__ == "__main__": prediction = make_prediction("data/faizan_r8.txt") # prediction = make_prediction("data/a_fib.npy") print(prediction)