import torch from torch import nn import torch.nn.functional as F class NeuralNetwork(nn.Module): def __init__(self): super().__init__() n_filters = 64 self.conv_1 = nn.Conv1d( 1, n_filters, 8, stride=1, padding='same') self.conv_2 = nn.Conv1d(n_filters, n_filters, 5, stride=1, padding='same') self.conv_3 = nn.Conv1d(n_filters, n_filters, 3, stride=1, padding='same') self.conv_4 = nn.Conv1d( 1, n_filters, 1, stride=1, padding='same') # Expanding for addition self.conv_5 = nn.Conv1d( n_filters, n_filters*2, 8, stride=1, padding='same') self.conv_6 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same') self.conv_7 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same') self.conv_8 = nn.Conv1d( n_filters, n_filters*2, 1, stride=1, padding='same') self.conv_9 = nn.Conv1d(n_filters*2, n_filters*2, 8, stride=1, padding='same') self.conv_10 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same') self.conv_11 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same') self.conv_12 = nn.Conv1d(n_filters*2, n_filters*2, 1, stride=1, padding='same') self.classifier = nn.Linear(128, 5) self.log_softmax = nn.LogSoftmax(dim=1) def forward(self, x): x = x.float() # Block 1 a = self.conv_1(x) a = F.relu(a) b = self.conv_2(a) b = F.relu(b) c = self.conv_3(b) shortcut = self.conv_4(x) output_1 = torch.add(c, shortcut) output_1 = F.relu(output_1) #Block 2 a = self.conv_5(output_1) a = F.relu(a) b = self.conv_6(a) b = F.relu(b) c = self.conv_7(b) shortcut = self.conv_8(output_1) output_2 = torch.add(c, shortcut) output_2 = F.relu(output_2) #Block 3 a = self.conv_9(output_2) a = F.relu(a) b = self.conv_10(a) b = F.relu(b) c = self.conv_11(b) shortcut = self.conv_12(output_2) output_3 = torch.add(c, shortcut) output_3 = F.relu(output_3) res = self.classifier(output_3.mean((2,))) logits = self.log_softmax(res) return logits if __name__ == '__main__': model = NeuralNetwork() print(model)