Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCTC, Wav2Vec2Processor
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load model and processor
|
6 |
+
model_name = "nada15/wav2vec2-large-xls-r-300m-dm32"
|
7 |
+
processor = AutoModelForCTC.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCTC.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def transcribe(audio):
|
11 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
12 |
+
logits = model(inputs.input_values).logits
|
13 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
14 |
+
transcription = processor.batch_decode(predicted_ids)
|
15 |
+
return transcription[0]
|
16 |
+
|
17 |
+
# Gradio Interface
|
18 |
+
interface = gr.Interface(
|
19 |
+
fn=transcribe,
|
20 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
21 |
+
outputs="text",
|
22 |
+
live=True
|
23 |
+
)
|
24 |
+
|
25 |
+
interface.launch()
|