Spaces:
Build error
Build error
File size: 8,998 Bytes
5b2ab1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import Any, Dict, List, Optional, Tuple, Union
from dataclasses import dataclass, field
import cv2
import gradio as gr
import numpy as np
from PIL import Image
import torch
from ..models import create_diffusion_model, create_segmentation_model
from ..utils import (
get_masked_images,
visualize_segmentation_map,
get_masks_from_segmentation_map,
)
# points color and marker
COLOR = (255, 0, 0)
@dataclass
class AppState:
"""A class to store the memory state of the Gradio App."""
original_image: Image.Image = None
predicted_semantic_map: torch.Tensor = None
input_coordinates: List[int] = field(default_factory=list)
n_outputs: int = 2
class GradioApp:
def __init__(self):
self._interface = self.build_interface()
self.state = AppState()
self.segmentation_model = None
self.diffusion_model = None
@property
def interface(self):
return self._interface
def _segment_input(self, image: Image.Image, model_name: str) -> Image.Image:
"""Segment the input image using the given model."""
if self.segmentation_model is None:
self.segmentation_model = create_segmentation_model(
segmentation_model_name=model_name
)
predicted_semantic_map = self.segmentation_model.process([image])[0]
self.state.predicted_semantic_map = predicted_semantic_map
segmentation_map = visualize_segmentation_map(predicted_semantic_map, image)
return segmentation_map
def _generate_outputs(
self,
prompt: str,
model_name: str,
n_outputs: int,
inference_steps: int,
strength: float,
guidance_scale: float,
eta: float,
) -> Image.Image:
if self.diffusion_model is None:
self.diffusion_model = create_diffusion_model(
diffusion_model_name="controlnet_inpaint", control_model_name=model_name
)
control_image = self.diffusion_model.generate_control_images(
images=[self.state.original_image]
)[0]
image_mask, masked_control_image = get_masked_images(
control_image,
self.state.predicted_semantic_map,
self.state.input_coordinates,
)
outputs = self.diffusion_model.process(
images=[self.state.original_image],
prompts=[prompt],
mask_images=[image_mask],
control_images=[masked_control_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
n_outputs=n_outputs,
)
return (
*outputs["output_images"][0],
control_image,
image_mask,
)
def image_change(self, input_image):
input_image = input_image.resize((768, 512))
self.state.original_image = input_image
return input_image
def clear_coordinates(self):
self.state.input_coordinates = []
def get_coordinates(self, event: gr.SelectData, input_image: Image.Image):
w, h = tuple(event.index)
self.state.input_coordinates.append((h, w))
print(self.state.input_coordinates)
return Image.fromarray(
cv2.drawMarker(
np.asarray(input_image), event.index, COLOR, markerSize=20, thickness=5
)
)
def build_interface(self):
"""Builds the Gradio interface for the DesignGenie app."""
with gr.Blocks() as designgenie_interface:
# --> App Header <---
with gr.Row():
# --> Description <--
with gr.Column():
gr.Markdown(
"""
# DesignGenie
An AI copilot for home interior design. It identifies various sections of your home and generates personalized designs for the selected sections using ContolNet and StableDiffusion.
"""
)
# --> Model Selection <--
with gr.Column():
with gr.Row():
segmentation_model = gr.Dropdown(
choices=["mask2former", "maskformer"],
label="Segmentation Model",
value="mask2former",
interactive=True,
)
controlnet_model = gr.Dropdown(
choices=["mlsd", "soft_edge", "hed", "scribble"],
label="Controlnet Module",
value="mlsd",
interactive=True,
)
# --> Model Parameters <--
with gr.Accordion(label="Parameters", open=False):
with gr.Column():
gr.Markdown("### Stable Diffusion Parameters")
with gr.Row():
with gr.Column():
inference_steps = gr.Number(
value=30, label="Number of inference steps."
)
strength = gr.Number(value=1.0, label="Strength.")
with gr.Column():
guidance_scale = gr.Number(value=7.5, label="Guidance scale.")
eta = gr.Number(value=0.0, label="Eta.")
with gr.Row().style(equal_height=False):
with gr.Column():
# --> Input Image and Segmentation <--
input_image = gr.Image(label="Input Image", type="pil")
input_image.select(
self.get_coordinates,
inputs=[input_image],
outputs=[input_image],
)
input_image.upload(
self.image_change, inputs=[input_image], outputs=[input_image]
)
with gr.Row():
gr.Markdown(
"""
1. Select your input image.
2. Click on `Segment Image` button.
3. Choose the segments that you want to redisgn by simply clicking on the image.
"""
)
with gr.Column():
segment_btn = gr.Button(
value="Segment Image", variant="primary"
)
clear_btn = gr.Button(value="Clear")
segment_btn.click(
self._segment_input,
inputs=[input_image, segmentation_model],
outputs=input_image,
)
clear_btn.click(self.clear_coordinates)
# --> Prompt and Num Outputs <--
text = gr.Textbox(
label="Text prompt(optional)",
info="You can describe how the model should redesign the selected segments of your home.",
)
num_outputs = gr.Slider(
value=3,
minimum=1,
maximum=5,
step=1,
interactive=True,
label="Number of Generated Outputs",
info="Number of design outputs you want the model to generate.",
)
submit_btn = gr.Button(value="Submit", variant="primary")
with gr.Column():
with gr.Tab(label="Output Images"):
output_images = [
gr.Image(
interactive=False, label=f"Output Image {i}", type="pil"
)
for i in range(3)
]
with gr.Tab(label="Control Images"):
control_labels = ["Control Image", "Generated Mask"]
control_images = [
gr.Image(interactive=False, label=label, type="pil")
for label in control_labels
]
submit_btn.click(
self._generate_outputs,
inputs=[
text,
controlnet_model,
num_outputs,
inference_steps,
strength,
guidance_scale,
eta,
],
outputs=output_images + control_images,
)
return designgenie_interface
|