nadiamaqbool81 commited on
Commit
cd3e20f
·
1 Parent(s): 2486c65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -22
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoTokenizer,AutoModelForCausalLM,pipeline
4
 
5
 
6
 
@@ -30,32 +30,22 @@ model_box=[
30
  ]
31
  current_model=model_box[0]
32
  pythonFlag = "false"
33
- javaFlag = "false"
34
 
35
  def the_process(input_text, model_choice):
36
  global pythonFlag
37
- global javaFlag
38
  global output
39
- global model
40
- global tokenizer
41
- global tokenizerJava
42
- global modelJava
43
- if(model_choice == 5):
44
  if(pythonFlag == "false"):
45
- tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/llama-2-7b-int4-python-code-510")
46
- model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/llama-2-7b-int4-python-code-510", load_in_4bit=True, torch_dtype=torch.float16, device_map= {"": 0} )
 
47
  output = run_predict(input_text, model, tokenizer)
 
48
  pythonFlag = "true"
49
  elif(pythonFlag == "true"):
50
- output = run_predict(input_text, model, tokenizer)
51
- elif(model_choice == 4):
52
- if(javaFlag == "false"):
53
- tokenizerJava = AutoTokenizer.from_pretrained("nadiamaqbool81/llama-2-7b-int4-java-code-1.178k")
54
- modelJava = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/llama-2-7b-int4-java-code-1.178k", load_in_4bit=True, torch_dtype=torch.float16, device_map= {"": 0})
55
- output = run_predict(input_text, modelJava, tokenizerJava)
56
- javaFlag = "true"
57
- elif(javaFlag == "true"):
58
- output = run_predict(input_text, modelJava, tokenizerJava)
59
  else:
60
  a_variable = model_box[model_choice]
61
  output = a_variable(input_text)
@@ -74,7 +64,6 @@ gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:
74
  model_choice = gr.Dropdown(label="Select Model", choices=[m for m in names], type="index", interactive=True)
75
  input_text = gr.Textbox(label="Input Prompt")
76
  output_window = gr.Code(label="Generated Code")
77
- title = "Text to Code Generation Models Comparison "
78
 
79
- interface = gr.Interface(fn=the_process, inputs=[input_text, model_choice], outputs="text", title = title )
80
- interface.launch()
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import T5ForConditionalGeneration, AutoTokenizer, RobertaTokenizer,AutoModelForCausalLM,pipeline,TrainingArguments
4
 
5
 
6
 
 
30
  ]
31
  current_model=model_box[0]
32
  pythonFlag = "false"
 
33
 
34
  def the_process(input_text, model_choice):
35
  global pythonFlag
36
+ print("Inside the_process for python 0", pythonFlag)
37
  global output
38
+ print("Inside the_process for python 1", model_choice)
39
+ if(model_choice==5):
 
 
 
40
  if(pythonFlag == "false"):
41
+ print("Inside llama for python")
42
+ tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python")
43
+ model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python", load_in_4bit=True, torch_dtype=torch.float16, device_map= {"": 0} )
44
  output = run_predict(input_text, model, tokenizer)
45
+ print("output" , output)
46
  pythonFlag = "true"
47
  elif(pythonFlag == "true"):
48
+ print("pythonFlag", pythonFlag)
 
 
 
 
 
 
 
 
49
  else:
50
  a_variable = model_box[model_choice]
51
  output = a_variable(input_text)
 
64
  model_choice = gr.Dropdown(label="Select Model", choices=[m for m in names], type="index", interactive=True)
65
  input_text = gr.Textbox(label="Input Prompt")
66
  output_window = gr.Code(label="Generated Code")
 
67
 
68
+ interface = gr.Interface(fn=the_process, inputs=[input_text, model_choice], outputs="text")
69
+ interface.launch(debug=True)