Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,29 +23,27 @@ print(f"Low memory mode: {LOW_MEMORY}")
|
|
23 |
load_in_4bit = True # Use 4-bit quantization if memory is constrained
|
24 |
|
25 |
# Load model and tokenizer with device mapping
|
26 |
-
# Replace with the name of your trained model
|
27 |
model_name = "nafisneehal/chandler_bot"
|
28 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
29 |
model_name,
|
30 |
-
load_in_4bit=load_in_4bit
|
31 |
-
device_map="auto" if device == "cuda" else None # Automatic GPU mapping
|
32 |
)
|
33 |
model.to(device)
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
|
36 |
-
# Define prompt structure (update
|
37 |
-
alpaca_prompt = "{instruction} {
|
38 |
|
39 |
@spaces.GPU # Use GPU provided by Hugging Face Spaces if available
|
40 |
def generate_response(user_input, chat_history):
|
41 |
-
instruction = "Chat with me like Chandler talks."
|
42 |
input_text = user_input # Treats user input as the input
|
43 |
|
|
|
|
|
|
|
44 |
# Prepare inputs for model inference on the correct device
|
45 |
-
inputs = tokenizer(
|
46 |
-
[alpaca_prompt.format(instruction, input_text, "")],
|
47 |
-
return_tensors="pt"
|
48 |
-
).to(device) # Ensure tensors are on the correct device
|
49 |
|
50 |
# Generate response on GPU or CPU as appropriate
|
51 |
with torch.no_grad():
|
@@ -63,7 +61,7 @@ def generate_response(user_input, chat_history):
|
|
63 |
|
64 |
# Set up Gradio interface
|
65 |
with gr.Blocks() as demo:
|
66 |
-
gr.Markdown("#
|
67 |
|
68 |
chat_history = gr.Chatbot(label="Chat History")
|
69 |
user_input = gr.Textbox(
|
@@ -76,4 +74,4 @@ with gr.Blocks() as demo:
|
|
76 |
submit_btn.click(generate_response, [user_input, chat_history], [
|
77 |
chat_history, user_input])
|
78 |
|
79 |
-
demo.launch()
|
|
|
23 |
load_in_4bit = True # Use 4-bit quantization if memory is constrained
|
24 |
|
25 |
# Load model and tokenizer with device mapping
|
|
|
26 |
model_name = "nafisneehal/chandler_bot"
|
27 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
28 |
model_name,
|
29 |
+
load_in_4bit=load_in_4bit
|
|
|
30 |
)
|
31 |
model.to(device)
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
|
34 |
+
# Define prompt structure (update as needed for your model)
|
35 |
+
alpaca_prompt = "{instruction} {input_text} {output}"
|
36 |
|
37 |
@spaces.GPU # Use GPU provided by Hugging Face Spaces if available
|
38 |
def generate_response(user_input, chat_history):
|
39 |
+
instruction = "Chat with me like Chandler talks."
|
40 |
input_text = user_input # Treats user input as the input
|
41 |
|
42 |
+
# Format the input using the prompt template
|
43 |
+
formatted_input = alpaca_prompt.format(instruction=instruction, input_text=input_text, output="")
|
44 |
+
|
45 |
# Prepare inputs for model inference on the correct device
|
46 |
+
inputs = tokenizer([formatted_input], return_tensors="pt").to(device)
|
|
|
|
|
|
|
47 |
|
48 |
# Generate response on GPU or CPU as appropriate
|
49 |
with torch.no_grad():
|
|
|
61 |
|
62 |
# Set up Gradio interface
|
63 |
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("# Chandler-Like Chatbot on GPU")
|
65 |
|
66 |
chat_history = gr.Chatbot(label="Chat History")
|
67 |
user_input = gr.Textbox(
|
|
|
74 |
submit_btn.click(generate_response, [user_input, chat_history], [
|
75 |
chat_history, user_input])
|
76 |
|
77 |
+
demo.launch(share=True) # Enables a public link
|