Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from unsloth import FastLanguageModel
|
5 |
+
from huggingface_hub import spaces
|
6 |
+
|
7 |
+
# Get Hugging Face token from environment variables
|
8 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
9 |
+
|
10 |
+
# Check if we're running in a Hugging Face Space with GPU constraints
|
11 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
12 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
13 |
+
|
14 |
+
# Determine device (use GPU if available)
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
17 |
+
|
18 |
+
print(f"Using device: {device}")
|
19 |
+
print(f"Low memory mode: {LOW_MEMORY}")
|
20 |
+
|
21 |
+
# Model configuration
|
22 |
+
max_seq_length = 2048 # Max sequence length for RoPE scaling
|
23 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
24 |
+
load_in_4bit = True # Enable 4-bit quantization if memory is limited
|
25 |
+
|
26 |
+
# Load model and tokenizer with device mapping
|
27 |
+
model_name = "nafisneehal/chandler_bot"
|
28 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
29 |
+
model_name=model_name,
|
30 |
+
max_seq_length=max_seq_length,
|
31 |
+
dtype=dtype,
|
32 |
+
load_in_4bit=load_in_4bit,
|
33 |
+
device_map="auto" if device == "cuda" else None # Automatic GPU mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
+
FastLanguageModel.for_inference(model) # Optimize model for faster inference
|
36 |
+
|
37 |
+
# Define prompt structure (update if necessary for your model)
|
38 |
+
alpaca_prompt = "{instruction} {input} {output}"
|
39 |
+
|
40 |
+
instruction_text = "Learn how to talk like Chandler - a popular character from FRIENDS TV Show. Input is someone saying something, Output is what Chandler saying in response."
|
41 |
+
|
42 |
+
|
43 |
+
@spaces.GPU # Use GPU provided by Hugging Face Spaces if available
|
44 |
+
def generate_response(user_input, chat_history):
|
45 |
+
instruction = user_input # Treats user input as instruction
|
46 |
+
input_text = "" # Any additional input if needed; empty otherwise
|
47 |
+
|
48 |
+
# Prepare inputs for model inference on the correct device
|
49 |
+
inputs = tokenizer(
|
50 |
+
[alpaca_prompt.format(instruction, input_text, "")],
|
51 |
+
return_tensors="pt"
|
52 |
+
).to(device) # Ensure tensors are on the correct device
|
53 |
+
|
54 |
+
# Generate response on GPU or CPU as appropriate
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
57 |
+
|
58 |
+
# Decode response
|
59 |
+
bot_reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
# Update chat history with user and bot interactions
|
62 |
+
chat_history.append(("User", user_input))
|
63 |
+
chat_history.append(("Bot", bot_reply))
|
64 |
+
|
65 |
+
return chat_history, "" # Returns updated chat history and clears input
|
66 |
+
|
67 |
+
|
68 |
+
# Set up Gradio interface
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# Llama-Based Chatbot on GPU")
|
71 |
+
|
72 |
+
chat_history = gr.Chatbot(label="Chat History")
|
73 |
+
user_input = gr.Textbox(
|
74 |
+
placeholder="Type your message here...", label="Your Message")
|
75 |
|
76 |
+
# Connect submit actions to generate response function
|
77 |
+
user_input.submit(generate_response, [user_input, chat_history], [
|
78 |
+
chat_history, user_input])
|
79 |
+
submit_btn = gr.Button("Send")
|
80 |
+
submit_btn.click(generate_response, [user_input, chat_history], [
|
81 |
+
chat_history, user_input])
|
82 |
|
83 |
+
demo.launch()
|
|